引自:http://zhaohe162.blog.163.com/blog/static/382167972011910112950666/
一、常用JVM配置参数
1.1基本参数
-client,-server
这两个参数用于设置虚拟机使用何种运行模式,client模式启动比较快,但运行时性能 和内存 管理效率不如server模式,通常用于客户端应用程序。相反,server模式启动比client慢,但可获得更高的运行性能。
在windows上,缺省的虚拟机类型为client模式,如果要使用server模式,就需要在启动虚拟机时加-server参数,以获得更高性能,对 服务器端应用,推荐采用server模式,尤其是多个CPU的系统。在Linux,Solaris上缺省采用server模式。
-hotspot
含义与client相同,jdk1.4以前使用的参数,jdk1.4开始不再使用,代之以client。
-classpath,-cp
虚拟机在运行一个类时,需要将其装入内存,虚拟机搜索类的方式和顺序如下:
Bootstrap classes,Extension classes,User classes。
Bootstrap 中的路径是虚拟机自带的jar或zip文件,虚拟机首先搜索这些包文件,用System.getProperty(”sun.boot.class.path”)可得到虚拟机搜索的包名。
Extension是位于jre/lib/ext目录下的jar文件,虚拟机在搜索完Bootstrap后就搜索该目录下的jar文件。用System. getProperty(”java.ext.dirs”)可得到虚拟机使用Extension搜索路径。
User classes搜索顺序为当前目录、环境变量 CLASSPATH、-classpath。
-classpath告知虚拟机搜索目录名、jar文档名、zip文档名,之间用分号;分隔。
-D<propertyName>=value
在虚拟机的系统属性中设置属性名/值对,运行在此虚拟机之上的应用程序可用System.getProperty(“propertyName”)得到value的值。
如果value中有空格,则需要用双引号将该值括起来,如-Dname=”space string”。
该参数通常用于设置系统级全局变量值,如配置文件路径,应为该属性在程序中任何地方都可访问。
-verbose[:class|gc|jni]
在输出设备上显示虚拟机运行信息。
verbose和verbose:class含义相同,输出虚拟机装入的类的信息,显示的信息格式如下:
[Loaded java.io.FilePermission$1 from shared objects file]
当虚拟机报告类找不到或类冲突时可用此参数来诊断来查看虚拟机从装入类的情况。
-verbose:gc在虚拟机发生内存回收时在输出设备显示信息,格式如下:
[Full GC 268K->168K(1984K), 0.0187390 secs]
该参数用来监视虚拟机内存回收的情况。
-verbose:jni在虚拟机调用native方法时输出设备显示信息,格式如下:
[Dynamic-linking native method HelloNative.sum ... JNI]
该参数用来监视虚拟机调用本地方法的情况,在发生jni错误时可为诊断提供便利。
-version
显示可运行的虚拟机版本信息然后退出。一台机器上装有不同版本的JDK时
-ea[:<packagename>...|:<classname>]
上述参数就用来设置虚拟机是否启动断言机制,缺省时虚拟机关闭断言机制,用-ea可打开断言机制,不 加<packagename>和classname时运行所有包和类中的断言,如果希望只运行某些包或类中的断言,可将包名或类名加到-ea 之后。例如要启动包com.foo.util中的断言,可用命令 -ea:com.foo.util
-da[:<packagename>...|:<classname>]
用来设置虚拟机关闭断言处理,packagename和classname的使用方法和-ea相同。
-esa | -enablesystemassertions
设置虚拟机显示系统类的断言。
-agentlib:<libname>[=<options>]
该参数是JDK5新引入的,用于虚拟机装载本地代理库。
Libname为本地代理库文件名,虚 拟机的搜索路径为环境变量PATH中的路径,options为传给本地库启动时的参数,多个参数之间用逗号分隔。在Windows平台上虚拟机搜索本地库 名为libname.dll的文件,在Unix上虚拟机搜索本地库名为libname.so的文件,搜索路径环境变量在不同系统上有所不同,Linux、 SunOS、IRIX上为LD_LIBRARY_PATH,AIX上为LIBPATH,HP-UX上为SHLIB_PATH。
例如可使用-agentlib:hprof来获取虚拟机的运行情况,包括CPU、内存、线程等的运行数据,并可输出到指定文件中,可用-agentlib:hprof=help来得到使用帮助列表。在jre/bin目录下可发现hprof.dll文件。
1.2扩展参数
-Xnoclassgc
关闭虚拟机对class的垃圾回收功能。慎用
-Xincgc
启动增量垃圾收集器,缺省是关闭的。增量垃圾收集器能减少偶然发生的长时间的垃圾回收造成的暂停时间。但增量垃圾收集器和应用程序并发执行,因此会占用部分CPU在应用程序上的功能。
-Xprof
输出CPU运行时的诊断信息。
-Xfuture
对类文件进行严格格式检查,以保证类代码符合类代码规范。为保持向后兼容,虚拟机缺省不进行严格的格式检查。
-Xrs
减少虚拟机中操作系统的信号(singals)的使用。该参数通常用在虚拟机以后台服务方式运行时使用(如Servlet)。
-Xmixed
设置-client模式虚拟机对使用频率高的方法进行Just-In-Time编译和执行,对其他方法使用解释方式执行。该方式是虚拟机缺省模式。
-Xint
设置-client模式下运行的虚拟机以解释方式执行类的字节码,不将字节码编译为本机码。
1.3堆设置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:设置年轻代大小
-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:设置最大持久代大小
-XX:MinPermSize=n:设置初始持久代大小
1.4 栈设置
-Xss:设置每个线程的堆栈大小
1.5收集器设置
-XX:+UseSerialGC:设置串行收集器
-XX:+UseParallelGC:设置并行收集器
-XX:+UseParalledlOldGC:设置并行年老代收集器
-XX:+UseConcMarkSweepGC:设置并发收集器
在后面介绍每个垃圾回收器
1.6 垃圾回收统计信息
-XX:+PrintGC
输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs]
[Full GC 121376K->10414K(130112K), 0.0650971secs]
-XX:+PrintGCDetails
输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]
[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps
-XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:
打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
输出形式:Application time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime:
打印垃圾回收期间程序暂停的时间。可与上面混合使用
输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC:
打印GC前后的详细堆栈信息
输出形式:
34.702: [GC {Heap before gc invocations=7:
def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000)
tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
}
, 0.0757599 secs]
-Xloggc:filename:
与上面几个配合使用,把相关日志信息记录到文件以便分析。
1.7 并行收集器设置
-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
1.8 并发收集器设置
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
二、垃圾回收类型
2.1相关概念
基本回收算法
-
引用计数(Reference Counting)
比较古老的回收算法。原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数。垃圾回收时,只用收集计数为0的对象。此算法最致命的是无法处理循环引用的问题。 -
标记-清除(Mark-Sweep)
此算法执行分两阶段。第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。此算法需要暂停整个应用,同时,会产生内存碎片。 -
复制(Copying)
此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时, 遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内 存整理,不过出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。 -
标记-整理(Mark-Compact)
此算法结合了“标记-清除”和“复制”两个算法的优点。也是 分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避 免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。 -
增量收集(Incremental Collecting)
实施垃圾回收算法,即:在应用进行的同时进行垃圾回收。不知道什么原因JDK5.0中的收集器没有使用这种算法的。 -
分代(Generational Collecting)
基于对对象生命周期分析后得出的垃圾回收算法。把对象分为年青代、年老代、持久代,对不同生命周期的对象使用不同的算法(上述方式中的一个)进行回收。现在的垃圾回收器(从J2SE1.2开始)都是使用此算法的。
2.2 分代垃圾回收详述
2.2.1 JVM内存
上图为JVM内存中各代分布
-
Young(年轻代)
年轻代分三个区。一个Eden区,两个 Survivor区。大部分对象在Eden区中生成。当Eden区满时,还存活的对象将被复制到Survivor区(两个中的一个),当这个 Survivor区满时,此区的存活对象将被复制到另外一个Survivor区,当这个Survivor区也满了的时候,从第一个Survivor区复制 过来的并且此时还存活的对象,将被复制“年老区(Tenured)”。需要注意,Survivor的两个区是对称的,没先后关系,所以同一个区中可能同时 存在从Eden复制过来 对象,和从前一个Survivor复制过来的对象,而复制到年老区的只有从第一个Survivor去过来的对象。而且,Survivor区总有一个是空 的。 -
Tenured(年老代)
年老代存放从年轻代存活的对象。一般来说年老代存放的都是生命期较长的对象。 -
Perm(持久代)
用于存放静态文件,如今Java类、方法等。 持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate等,在这种时候需要设置一个比较大的持久代空间 来存放这些运行过程中新增的类。持久代大小通过-XX:MaxPermSize=<N>进行设置。
2.2.2 GC类型
GC有两种类型:Scavenge GC和Full GC。
- Scavenge GC
一般情况下,当新对象生成,并且在Eden申请空间失败时,就好触发Scavenge GC,堆Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。 - Full GC
对整个堆进行整理,包括Young、Tenured和Perm。Full GC比Scavenge GC要慢,因此应该尽可能减少Full GC。有如下原因可能导致Full GC:- Tenured被写满
- Perm域被写满
- System.gc()被显示调用
- 上一次GC之后Heap的各域分配策略动态变化
2.2.3 分代垃圾回收过程演示
2.2.4 垃圾回收器
目前的收集器主要有三种:串行收集器、并行收集器、并发收集器。
- 1. 串行收集器
使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高。但是,也无法使用多处理器的优势,所以此收集器适合单处理器机器。当然,此收集器也可以用在小数据量(100M左右)情况下的多处理器机器上。可以使用-XX:+UseSerialGC打开。
- 2. 并行收集器
a) 对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用。使用-XX:+UseParallelGC.打开。并行收集器在 J2SE5.0 update6上引入,在Java SE6.0中进行了增强–可以堆年老代进行并行收集。如果年老代不使用并发收集的话,是使用单线程进行垃圾回收,因此会制约扩展能力。使用 -XX:+UseParallelOldGC打开。
b) 使用-XX:ParallelGCThreads=<N>设置并行垃圾回收的线程数。此值可以设置与机器处理器数量相等。
c) 此收集器可以进行如下配置:
i. 最大垃圾回收暂停:指定垃圾回收时的最长暂停时间,通过-XX:MaxGCPauseMillis=<N>指定。<N>为毫秒. 如果指定了此值的话,堆大小和垃圾回收相关参数会进行调整以达到指定值。设定此值可能会减少应用的吞吐量。
ii. 吞吐量:吞吐量为垃圾回收时间与非垃圾回收时间的比值,通过-XX:GCTimeRatio=<N>来设定,公式为1/(1+N)。例如,-XX:GCTimeRatio=19时,表示5%的时间用于垃圾回收。默认情况为99,即1%的时间用于垃圾回收。
- 3. 并发收集器
可以保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用。使用-XX:+UseConcMarkSweepGC打开。
(1)并发收集器主要减少年老代的暂停时间,他在应用不停止的情况下使用独立的垃圾回收线程,跟踪可达对象。在每个年老 代垃圾回收周期中,在收集初期并发收集器会对整个应用进行简短的暂停,在收集中还会再暂停一次。第二次暂停会比第一次稍长,在此过程中多个线程同时进行垃 圾回收工作。
(2)并发收集器使用处理器换来短暂的停顿时间。在一个N个处理器的系统上,并发收集部分使用K/N个可用处理器进行回收,一般情况下1<=K<=N/4。
(3)在只有一个处理器的主机上使用并发收集器,设置为incremental mode模式也可获得较短的停顿时间。
(4)浮动垃圾:由于在应用运行的同时进行垃圾回收,所以有些垃圾可能在垃圾回收进行完成时产生,这样就造成了“Floating Garbage”,这些垃圾需要在下次垃圾回收周期时才能回收掉。所以,并发收集器一般需要20%的预留空间用于这些浮动垃圾。
(5)Concurrent Mode Failure:并发收集器在应用运行时进行收集,所以需要保证堆在垃圾回收的这段时间有足够的空间供程序使用,否则,垃圾回收还未完成,堆空间先满了。这种情况下将会发生“并发模式失败”,此时整个应用将会暂停,进行垃圾回收。
(6)启动并发收集器:因为并发收集在应用运行时进行收集,所以必须保证收集完成之前有足够的内存空间供程序使用,否则 会出现“Concurrent Mode Failure”。通过设置-XX:CMSInitiatingOccupancyFraction=<N>指定还有多少剩余堆时开始执行并 发收集
2.2.5 各种垃圾回收器应用场景
串行处理器:
–适用情况:数据量比较小(100M左右);单处理器下并且对响应时间无要求的应用。
–缺点:只能用于小型应用
并行处理器:
–适用情况:“对吞吐量有高要求”,多CPU、对应用响应时间无要求的中、大型应用。举例:后台处理、科学计算。
–缺点:应用响应时间可能较长
并发处理器:
–适用情况:“对响应时间有高要求”,多CPU、对应用响应时间有较高要求的中、大型应用。举例:Web服务器/应用服务器、电信交换、集成开发环境。
三、常用配置举例
3.1堆大小设置
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统 下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
-
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m:设置JVM最大可用内存为3550M。
-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k: 设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内 存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。 - java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:设置持久代大小为16m。
-XX:MaxTenuringThreshold=0: 设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为 一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
3.2回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
3.2.1吞吐量优先的并行收集器
如上所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置:
- java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。 - java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。 - java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。 - java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
3.2.2 响应时间优先的并发收集器
如上所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置:
- java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
四、调优总结
4.1 年轻代大小选择
- 响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
- 吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
-
响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
- 并发垃圾收集信息
- 持久代并发收集次数
- 传统GC信息
- 花在年轻代和年老代回收上的时间比例
4.2年老代大小选择
减少年轻代和年老代花费的时间,一般会提高应用的效率
- 吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
4.3 较小堆引起的碎片问题
因为年老 代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小 时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现 “碎片”,可能需要进行如下配置:
-XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
-XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
相关推荐
场景:大型Java应用的性能优化、内存管理和调优、垃圾回收调优、生产环境问题诊断。 目标:提升Java应用性能和稳定性,减少内存和GC问题,优化代码缓存使用,提高GC效率。 其它说明 工具和命令:使用 -XX:+...
Java垃圾回收机制详解和调优.doc Java垃圾回收机制详解和调优.doc Java垃圾回收机制详解和调优.doc Java垃圾回收机制详解和调优.doc Java垃圾回收机制详解和调优.doc Java垃圾回收机制详解和调优.doc Java垃圾回收...
《JVM、GC详解及调优》是一份深入解析Java虚拟机(JVM)和垃圾收集(Garbage Collection,简称GC)的详细资料。本文将根据提供的信息,深入阐述JVM的工作原理,GC的机制以及如何进行JVM的性能调优。 首先,JVM是...
1. **垃圾回收调优**:合理设置新生代和老年代的比例,选择合适的垃圾回收器(如G1、CMS等)。 2. **内存泄漏检测**:使用工具如VisualVM、JProfiler等监控并检测内存泄漏。 3. **线程管理**:优化线程池配置,减少...
JVM的垃圾回收调优涉及到多个参数,如新生代和老年代的比例、分配担保机制的阈值、最大对象年龄等,合理的配置可以显著提升系统性能。 总结来说,理解JVM的内存分配策略和垃圾回收机制对于优化Java应用的性能至关...
四、垃圾回收调优 1. 参数调整:例如-Xms和-Xmx设置堆大小,-XX:NewRatio设置新生代和老年代的比例,-XX:SurvivorRatio设定新生代Eden区与Survivor区的比例。 2. CMS调优:可通过-XX:...
综上所述,JVM性能调优涉及多个方面,包括理解参数传递机制、掌握不同类型的引用以及深入了解垃圾回收算法和分区处理方式等。通过合理配置和调整这些机制,可以显著提高Java应用程序的性能和稳定性。开发者应根据...
本文将详细解析JVM参数调优、垃圾回收(GC)算法及其原理,以帮助优化系统性能。 首先,对于JVM参数调优,有以下八条重要的建议: 1. 选择64位操作系统,尽管64位JDK在Linux上运行可能稍慢,但它能支持更大的内存...
JVM 内存参数详解以及配置调优 JVM 内存参数是 Java 虚拟机中最重要的参数之一,它直接影响着 Java 应用程序的性能和稳定性。在这个资源中,我们将详细讨论 JVM 内存参数的配置和调优,包括 JVM 的结构、内存管理、...
垃圾回收的调优涉及到许多参数,如-XX:MaxTenuringThreshold用于设置对象晋升老年代的年龄阈值。了解这些原理和细节有助于我们更有效地调整JVM配置,提高应用性能,减少不必要的垃圾回收开销,避免Full GC的发生,...
本文旨在深入解析JVM调优的关键参数及其应用场景,帮助开发者更好地理解和掌握JVM调优技巧。 #### 一、常见JVM问题及解决方案 1. **内存溢出(Out of Memory)** - **Heap Space**:当JVM堆内存不足时,会抛出`...
- 垃圾收集器主要针对堆进行内存回收,消除无用的对象。 3. **虚拟机栈(Java Virtual Machine Stack)**: - 每个线程都有自己的虚拟机栈,用于存储方法调用时的栈帧(Stack Frame)。 - 栈帧包含局部变量表、...
在这个全面理解JVM并掌握常规JVM调优的教程中,我们将深入探讨JVM的工作原理、内存模型、垃圾收集机制、类加载过程以及如何进行性能优化。 一、JVM工作原理 JVM的运行过程包括编译、加载、验证、解析、初始化、执行...
其中,垃圾回收(Garbage Collection)是 JVM 调优的重要组成部分,本文将详细介绍 JVM 调优中的垃圾回收机制。 一、垃圾回收算法 垃圾回收算法是 JVM 中用来回收无用对象的机制,主要有以下五种: 1. 引用计数...
Java虚拟机(JVM)是Java程序运行的基础,它负责解析和执行字节码,为开发者提供了跨平台的运行环境。JVM原理和调优是每个Java开发人员必须掌握的关键技能,这涉及到内存管理、垃圾收集、性能优化等多个方面。在深入...
JVM使用垃圾回收机制管理堆内存,分为年轻代和老年代,以优化垃圾收集效率。当对象不再被引用时,垃圾回收器会清理它们以释放空间。 3. **本地方法栈**:针对 native 方法,非Java代码执行时使用的栈。这些方法通常...