数学之美 系列九 -- 如何确定网页和查询的相关性
2006年6月27日 上午 09:53:00
发表者:吴军,Google 研究员
[我们已经谈过了如何自动下载网页、如何建立索引、如何衡量网页的质量(Page Rank)。我们今天谈谈如何确定一个网页和某个查询的相关性。了解了这四个方面,一个有一定编程基础的读者应该可以写一个简单的搜索引擎了,比如为您所在的学校或院系建立一个小的搜索引擎。]
我们还是看上回的例子,查找关于“原子能的应用”的网页。我们第一步是在索引中找到包含这三个词的网页(详见关于布尔运算的系列)。现在任何一个搜索引擎都包含几十万甚至是上百万个多少有点关系的网页。那么哪个应该排在前面呢?显然我们应该根据网页和查询“原子能的应用”的相关性对这些网页进行排序。因此,这里的关键问题是如何度量网页和查询的相关性。
我们知道,短语“原子能的应用”可以分成三个关键词:原子能、的、应用。根据我们的直觉,我们知道,包含这三个词多的网页应该比包含它们少的网页相关。当然,这个办法有一个明显的漏洞,就是长的网页比短的网页占便宜,因为长的网页总的来讲包含的关键词要多些。因此我们需要根据网页的长度,对关键词的次数进行归一化,也就是用关键词的次数除以网页的总字数。我们把这个商称为“关键词的频率”,或者“单文本词汇频率”(Term Frequency),比如,在某个一共有一千词的网页中“原子能”、“的”和“应用”分别出现了 2 次、35 次 和 5 次,那么它们的词频就分别是 0.002、0.035 和 0.005。 我们将这三个数相加,其和 0.042 就是相应网页和查询“原子能的应用”
相关性的一个简单的度量。概括地讲,如果一个查询包含关键词 w1,w2,...,wN, 它们在一篇特定网页中的词频分别是: TF1, TF2, ..., TFN。 (TF: term frequency)。 那么,这个查询和该网页的相关性就是:
TF1 + TF2 + ... + TFN。
读者可能已经发现了又一个漏洞。在上面的例子中,词“的”站了总词频的 80% 以上,而它对确定网页的主题几乎没有用。我们称这种词叫“应删除词”(Stopwords),也就是说在度量相关性是不应考虑它们的频率。在汉语中,应删除词还有“是”、“和”、“中”、“地”、“得”等等几十个。忽略这些应删除词后,上述网页的相似度就变成了0.007,其中“原子能”贡献了0.002,“应用”贡献了 0.005。
细心的读者可能还会发现另一个小的漏洞。在汉语中,“应用”是个很通用的词,而“原子能”是个很专业的词,后者在相关性排名中比前者重要。因此我们需要给汉语中的每一个词给一个权重,这个权重的设定必须满足下面两个条件:
1. 一个词预测主题能力越强,权重就越大,反之,权重就越小。我们在网页中看到“原子能”这个词,或多或少地能了解网页的主题。我们看到“应用”一次,对主题基本上还是一无所知。因此,“原子能“的权重就应该比应用大。
2. 应删除词的权重应该是零。
我们很容易发现,如果一个关键词只在很少的网页中出现,我们通过它就容易锁定搜索目标,它的权重也就应该大。反之如果一个词在大量网页中出现,我们看到它仍然不很清楚要找什么内容,因此它应该小。概括地讲,假定一个关键词 w 在 Dw 个网页中出现过,那么 Dw 越大,w 的权重越小,反之亦然。在信息检索中,使用最多的权重是“逆文本频率指数” (Inverse document frequency 缩写为IDF),它的公式为log(D/Dw)其中D是全部网页数。比如,我们假定中文网页数是D=10亿,应删除词“的”在所有的网页中都出现,即Dw=10亿,那么它的IDF=log(10亿/10亿)= log (1) = 0。假如专用词“原子能”在两百万个网页中出现,即Dw=200万,则它的权重IDF=log(500) =6.2。又假定通用词“应用”,出现在五亿个网页中,它的权重IDF = log(2)
则只有 0.7。也就只说,在网页中找到一个“原子能”的比配相当于找到九个“应用”的匹配。利用 IDF,上述相关性计算个公式就由词频的简单求和变成了加权求和,即 TF1*IDF1 + TF2*IDF2 +... + TFN*IDFN。在上面的例子中,该网页和“原子能的应用”的相关性为 0.0161,其中“原子能”贡献了 0.0126,而“应用”只贡献了0.0035。这个比例和我们的直觉比较一致了。
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明。在搜索、文献分类和其他相关领域有广泛的应用。讲起 TF/IDF 的历史蛮有意思。IDF 的概念最早是剑桥大学的斯巴克-琼斯[注:她有两个姓] (Karen Sparck Jones)提出来的。斯巴克-琼斯 1972 年在一篇题为关键词特殊性的统计解释和她在文献检索中的应用的论文中提出IDF。遗憾的是,她既没有从理论上解释为什么权重IDF 应该是对数函数 log(D/Dw)(而不是其它的函数,比如平方根),也没有在这个题目上作进一步深入研究,以至于在以后的很多文献中人们提到 TF/IDF 时没有引用她的论文,绝大多数人甚至不知道斯巴克-琼斯的贡献。同年罗宾逊写了个两页纸的解释,解释得很不好。倒是后来康乃尔大学的萨尔顿(Salton)多次写文章、写书讨论 TF/IDF 在信息检索中的用途,加上萨尔顿本人的大名(信息检索的世界大奖就是以萨尔顿的名字命名的)。很多人都引用萨尔顿的书,甚至以为这个信息检索中最重要的概念是他提出的。当然,世界并没有忘记斯巴克-琼斯的贡献,2004年,在纪念文献学学报创刊 60 周年之际,该学报重印了斯巴克-琼斯的大作。罗宾逊在同期期刊上写了篇文章,用香农的信息论解释 IDF,这回的解释是对的,但文章写的并不好、非常冗长(足足十八页),把一个简单问题搞复杂了。其实,信息论的学者们已经发现并指出,其实 IDF 的概念就是一个特定条件下、关键词的概率分布的交叉熵(Kullback-Leibler Divergence)(详见上一系列)。这样,信息检索相关性的度量,又回到了信息论。
现在的搜索引擎对 TF/IDF 进行了不少细微的优化,使得相关性的度量更加准确了。当然,对有兴趣写一个搜索引擎的爱好者来讲,使用 TF/IDF 就足够了。 如果我们结合上网页排名(Page Rank),那么给定一个查询,有关网页综合排名大致由相关性和网页排名乘积决定。
转自: http://googlechinablog.com/2006/06/blog-post_27.html
分享到:
相关推荐
相关性分析作为数学建模的一个核心组成部分,可以帮助我们理解不同变量之间是否存在以及存在何种程度的关联性。在众多的相关性分析方法中,斯皮尔曼(Spearman)相关系数是一种非参数相关性度量,适用于研究变量间...
论文研究-股票流动性与资产流动性的相关性------理论与实证分析.pdf, 从公司财务的视角探讨资产流动性对股票流动性的影响: 一方面,资产的流动性越高, 现 有资产的不确定...
SPSS数据分析教程--相关性.ppt
CCF-大数据竞赛-基金间的相关性预测-复赛19名(源码+文档说明).zip,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就...
利用Halcon完成模板匹配的Hdev文件,然后将该文件导出至C++代码,然后利用MFC对代码进行重整,在MFC界面上完成...具体详细内容可参考我博客--MFC与Halcon混合编程之--基于相关性的模板匹配(近两天会完成2021.3.11)
**典型相关性分析(Canonical Correlation Analysis,简称CCA)**是一种统计分析方法,用于寻找两个随机向量集合之间的最大相关性。在机器学习、数据挖掘和信号处理等领域中,它常用于探究不同变量间的结构关系,...
5. **MATLAB实现**:在给定的`get_degree_correlation.m`和`get_degree.m`文件中,很可能是用MATLAB编写的函数,用于计算网络的度-度相关性和节点度。`get_degree.m`可能是用来获取网络中所有节点的度值,而`get_...
最常见的相关性分析方法之一是计算相关系数,其中最常见的是皮尔逊相关系数。 1. **皮尔逊相关系数:** 皮尔逊相关系数衡量了两个变量之间的线性关系强度和方向。取值范围在 -1 到 1 之间,其中1表示完全正相关,-1 ...
典型相关性分析(Canonical Correlation Analysis,CCA)是一种用于研究两组变量之间关系的多元统计方法。它的目标是找到两组变量之间的最大相关性。具体而言,CCA寻找两个线性组合(典型变量),使得这两个组合之间...
spss一些用法-变异系数-相关性检验.pdf
食品变质与食品类型相关性--乳与乳制品腐败变质.ppt
贝叶斯网络作为一种能够处理不确定性的数学模型,在分布式电源和广义储能的联合规划中也得到了应用。它能够通过建立风电出力、光照强度和负荷需求之间的相关性模型,对各参数间复杂的概率关系进行建模和预测。此外,...
在数学建模中,序列相关性是一个至关重要的概念,特别是在时间序列分析、统计预测和经济建模等领域。序列相关性指的是一个序列中的数据点与它前面或后面的点之间存在某种统计上的关联。这种关联可以是正相关(一个值...
特征相关性分析是一种用于确定特征变量之间关系的统计技术,它可以帮助我们了解特征之间的相互作用以及它们如何共同影响目标变量。相关性可以分为正相关和负相关。当两个特征的值同时增加或同时减少时,它们就是正...
spearman相关性分析 spearman相关性分析 spearman相关性分析 spearman相关性分析 spearman相关性分析
本教程主要围绕“matlab开发-图像相关性”展开,讲解如何使用MATLAB来计算和分析图像之间的相关性。我们将通过以下几个方面详细讨论这个主题: 1. **标准化互相关**: 标准化互相关是一种度量两个图像相似性的方法...
在IT领域,尤其是在数据分析和机器学习中,相关性分析是一种常用的技术,用于探索变量之间的关系。本资源包含的"算法源码-相关性分析:典型相关分析matlab代码.rar"是一个MATLAB实现的典型相关分析(Canonical ...
这项竞赛旨在挑战参赛者预测不同基金之间的相关性,这对于金融市场的风险管理和投资策略制定具有深远意义。通过对海量的金融数据进行深入分析,参赛者需要构建出精准的预测模型,以揭示基金表现之间的内在关联。 一...
在本项目实践中,我们将深入探讨如何使用Python实现TF-IDF(Term Frequency-Inverse Document Frequency)算法,这是一种在信息检索和自然语言处理领域广泛应用于衡量文本中词汇重要性的统计方法。TF-IDF的主要目的...