公司里面有一个12nodes的rac环境来跑数据仓库的应用,有一个1TB的临时表空间,有一些应用会跑的很慢,比如多个大表关联,而且有复杂的分组排序的操作会耗费大量的临时表空间,这些应用有事会跑的比较快,有时会跑的莫名其妙的慢,这是为什么呢?
花了点时间看了一下原因,
模块1正常的时候15分钟完成,但是慢的时候会跑1个半小时,原来有些的P0XX进程都在等待”enq: TS – contention”,根据gv$session_wait我们可以通过p2找到tablespace ID,进而可以发现是临时表空间出现了TS enq,然后可以发现是smon进程持有了这enq,这些P0XX的并行进程都在等待smon去释放这个enq,但是smon这时候在做什么呢?
那首先让我们来看一下rac里面的temp空间分配的机制是怎么样的。在rac里面,大家都知道temp表空间对所有节点都是可见的,但是temp空间一旦分配给了某一个节点使用,其他节点对这部分空间将都会看不见。
很典型的情况就像下面这样,每个节点有自己的temp extent
INST_ID TSNAME TOTAL USED FREE ---------- ------- ----- ---- ----- 1 TEMP 6678 0 6678 2 TEMP 83966 0 83966 3 TEMP 8908 0 8908 4 TEMP 1589 0 1589 5 TEMP 10006 0 10006 6 TEMP 12147 0 12147 7 TEMP 99 0 99 8 TEMP 414 0 414 9 TEMP 10913 0 10913 10 TEMP 2347 6 2341 11 TEMP 343 3 340 12 TEMP 16189 0 16189
一旦某个节点上发生了一个大的分组排序的操作,它目前分配到的temp exten将会被耗尽,这时候它会发出一个Cross Instance Call(CIC)来向每个节点请求新的temp extent,这时候smon就启动去回收每个节点的free temp extent,在这个过程中smon会持有TS enq,发起空间请求的节点必须等待smon完成对所有节点的free temp extent回收请求后才会继续下一步动作,smon每次向每个节点回收100 extents的临时空间,在这个12nodes的环境里面最大就是1200 extents,每个extent设置为8M,大致每次回收8GB的空间可以给发起节点使用,但是在一个很大操作面前,8GB的临时空间一下子就能用完。而且在一个多并发的系统里面,同时会有很多个大操作在进行,这个时候对于临时表空间的争用将会非常严重,会严重影响整个系统的执行效率。
下面来看一个实验
首先看一下当前系统个节点临时空间的分配情况
INST_ID TSNAME TOTAL USED FREE ---------- ------- ----- ----- --- 1 TEMP 6378 0 6378 2 TEMP 82296 0 82296 3 TEMP 8908 0 8908 4 TEMP 1589 0 1589 5 TEMP 10006 0 10006 6 TEMP 12147 0 12147 7 TEMP 99 0 99 8 TEMP 414 0 414 9 TEMP 10913 0 10913 10 TEMP 2347 6 2341 11 TEMP 520 3 517 12 TEMP 16189 0 16189
我们可以看到7节点上当前只分配到了99个extents,
select sum(TOTAL_EXTENTS)*8/1024||'G' from gv$sort_segment; SUM(TOTAL_EXTENTS)*8/1024||'G' ----------------------------------------- 1185.984375G
当前系统总共分配了1185.984375G的temp空间,总的temp表空间大小是1200G,整个系统里面还有1200-1186=14GB的空闲temp空间可以使用
下面登录到7节点执行一个耗费临时空间的操作
dwdb7> exec big_sort(null);
过了一会可以看到
select sum(TOTAL_EXTENTS)*8/1024||'G' from gv$sort_segment; SUM(TOTAL_EXTENTS)*8/1024||'G' ----------------------------------------- 1199.9921875G
系统的空闲临时空间已经被用完,这个时候7节点会通过CIC请求smon释放其他节点的空闲temp空间,可以看到节点7现在的等待
Taobao@dwdb7> / EVENT ---------------------------------------------------------------- PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd PX Deq Credit: send blkd enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention enq: TS - contention
再看各节点temp空间的分布
Taobao@dwdb9> select INST_ID,TABLESPACE_NAME TSNAME, TOTAL_EXTENTS TOTAL,USED_EXTENTS USED,FREE_EXTENTS FREE from gv$sort_segment order by inst_id; INST_ID TSNAME TOTAL USED FREE ---------- --------------- ---------- 1 TEMP 6278 0 6278 2 TEMP 82196 0 82196 3 TEMP 8808 0 8808 4 TEMP 1489 0 1489 5 TEMP 9906 0 9906 6 TEMP 12047 0 12047 7 TEMP 2992 2992 0 8 TEMP 314 0 314 9 TEMP 10813 0 10813 10 TEMP 2247 3 2244 11 TEMP 420 3 417 12 TEMP 16089 0 16089
smon完成一轮空间回收,节点7继续进行排序操作,但是可以看到所有的其他节点free_extents都少了100
INST_ID TSNAME TOTAL USED FREE ---------- ------------------------- 1 TEMP 6178 0 6178 2 TEMP 82096 0 82096 3 TEMP 8708 0 8708 4 TEMP 1389 0 1389 5 TEMP 9806 0 9806 6 TEMP 11947 0 11947 7 TEMP 3728 3728 0 8 TEMP 214 0 214 9 TEMP 10713 0 10713 10 TEMP 2147 3 2144 11 TEMP 320 3 317 12 TEMP 15989 0 15989
然后节点7用完smon回收的空间后又会碰到空间不够的问题,于是发起CIC请求smon会继续回收,
INST_ID TSNAME TOTAL USED FREE ---------- ------ -------- ------------- 1 TEMP 6078 0 6078 2 TEMP 81996 0 81996 3 TEMP 8608 0 8608 4 TEMP 1289 0 1289 5 TEMP 9706 0 9706 6 TEMP 11847 0 11847 7 TEMP 5192 5192 0 8 TEMP 114 0 114 9 TEMP 10613 0 10613 10 TEMP 2047 3 2044 11 TEMP 220 117 103 12 TEMP 15889 0 15889
周而复始,直到整个操作完成,这中间的回收过程会比较久,而且排序操作会一直等待smon从而影响整个应用模块的时间,而且由于各个节点分配到的temp extent严重贫富不均,如果一个sql刚好分配到了某个temp extent比较少的节点,它将会深受其害。
问题的原因相信大家都看明白了,下面就来看一下解决的方案,Oracle提供了一个命令来释放temp空间
ALTER SESSION SET events ‘immediate trace name drop_segments level tablespace_number+1′;
现在节点1有5478个free temp extent,
INST_ID TSNAME TOTAL USED FREE ---------- ---------- -------- ---------- ------- 1 TEMP 5478 0 5478
登录到节点1执行两次ALTER SESSION SET events ‘immediate trace name drop_segments level 4′后将会释放出200个extent
INST_ID TSNAME TOTAL USED FREE ---------- ---------- -------- ---------- ------- 1 TEMP 5278 0 5278
这样的话我们就可以自己包装到crontab,定时在每个节点执行这个命令,这样节点间贫富不均的情况将会被修正,各个节点的空闲temp空间将会被及时的返回到temp pool中供需要的节点使用,也就避免了sql会去等待smon回收,基本上相当于每个节点有自己的专属的temp空间的效果,修正了RAC在temp空间管理这块的缺陷。
相关推荐
- **实例ID(inst_id):** 这个字段使得管理员可以在RAC环境中查询来自所有实例的信息,这对于管理多实例数据库非常有用。 #### 总结 通过深入探讨Oracle 10g中的动态性能视图和全球固定视图,我们可以更全面地...
Tripple Farm:Match 3 Combination Game Complete Project 合成小镇三消Unity合成消除游戏项目游戏插件模版C# 支持Unity2020.3.4或更高 您知道像三合镇这样的著名益智游戏,并且您想制作一个自己的游戏。就是这样。这个包正好适合您。 这是一个完整的项目,您可以在零分钟内将其上传到 appstore 或 googleplay 商店。 基本规则: 3个或以上相同的道具可以匹配升级为新的道具。动物如果被困住,也可以合并。 羽毛: -移动(android/ios)就绪。 - 包含所有源代码。 -超过 12 座建筑/军团需要升级。 -三种特殊物品可以提供帮助。 - 三个不同的主题(场景和动物) -unity iap 支持 -Unity UI -广告位已准备好 -包含详细文档
内容概要:本文档是一份针对Java初学者的基础测试题,分为不定项选择题、简答题和编程题三大部分。选择题涵盖标识符、数组初始化、面向对象概念、运算符优先级、循环结构、对象行为、变量命名规则、基本
内容概要:本文详细介绍了如何利用MATLAB进行机器人运动学、动力学以及轨迹规划的建模与仿真。首先,通过具体的代码实例展示了正运动学和逆运动学的实现方法,包括使用DH参数建立机械臂模型、计算末端位姿以及求解关节角度。接着,讨论了雅克比矩阵的应用及其在速度控制中的重要性,并解释了如何检测和处理奇异位形。然后,深入探讨了动力学建模的方法,如使用拉格朗日方程和符号工具箱自动生成动力学方程。此外,还介绍了多种轨迹规划技术,包括抛物线插值和五次多项式插值,确保路径平滑性和可控性。最后,提供了常见仿真问题的解决方案,强调了在实际工程项目中需要注意的关键点。 适合人群:对机器人控制感兴趣的初学者、希望深入了解机器人运动学和动力学的学生及研究人员、从事机器人开发的技术人员。 使用场景及目标:① 学习如何使用MATLAB进行机器人运动学、动力学建模;② 掌握不同类型的轨迹规划方法及其应用场景;③ 解决仿真过程中遇到的各种问题,提高仿真的稳定性和准确性。 其他说明:文中提供的代码片段可以直接用于实验和教学,帮助读者更好地理解和掌握相关概念和技术。同时,针对实际应用中的挑战提出了实用的建议,有助于提升项目的成功率。
包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、发送机:18B20测温、开关模拟灯光,发送数据; 3、接收机:接受数据、12864液晶显示;
内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
linux之用户管理教程.md
内容概要:本文详细介绍了如何利用组态王和西门子S7-200 PLC构建六层或八层电梯控制系统。首先进行合理的IO地址分配,明确输入输出信号的功能及其对应的物理地址。接着深入解析了PLC源代码的关键部分,涵盖初始化、呼叫处理、电梯运行逻辑和平层处理等方面。此外,提供了组态王源代码用于实现动画仿真,展示了电梯轿厢的画面创建及动画连接方法。最后附上了详细的电气原理图和布局图,帮助理解和实施整个系统架构。 适合人群:从事工业自动化控制领域的工程师和技术人员,尤其是对PLC编程和人机界面开发感兴趣的从业者。 使用场景及目标:适用于教学培训、工程项目实践以及研究开发等场合。旨在为相关人员提供一个完整的电梯控制系统设计方案,便于他们掌握PLC编程技巧、熟悉组态软件的应用,并能够独立完成类似项目的开发。 其他说明:文中不仅包含了理论知识讲解,还分享了许多实际操作经验,如解决编码器丢脉冲的问题、优化平层停车精度的方法等。同时强调了安全性和可靠性方面的考虑,例如设置了多重保护机制以确保系统稳定运行。
在工业生产和设备运行过程中,滚动轴承故障、变压器油气故障等领域的数据分类与故障诊断至关重要。准确的数据分类与故障诊断能够及时发现设备潜在问题,避免故障恶化导致的生产事故与经济损失。LSTM能够捕获时序信息,马尔可夫场(MTF)能够一维信号转换为二维特征图,并结合CNN学习空间特征,MTF-1D-2D-CNN-LSTM-Attention模型通过将一维时序信号和二维图像融合,融合不同模态优势,并引入多头自注意力机制提高泛化能力,为数据分类与故障诊断提供了新的思路。实验结果表明,该模型在分类准确率、鲁棒性和泛化能力方面具有显著优势。多模态融合算法凭借其创新点和实验验证的有效性,在滚动轴承故障、变压器油气故障等领域展现出广阔的应用前景,有望推动相关领域故障诊断技术的进一步发展。 关键词:多模态融合;故障诊断;马尔可夫场;卷积神经网络;长短期记忆神经网络 适用平台:Matlab2023版本及以上。实验硬件设备配置如下:选用高性能计算机,搭载i7处理器,以确保数据处理和模型训练的高效性;配备16GB的内存,满足大规模数据加载和模型运算过程中的内存需求;使用高性能显卡,提供强大的并行计算能力,加速深度学习模型的训练过程。实验参数的选择依据多方面因素确定。
内容概要:本文档提供了一个面试模拟的指导框架,旨在为用户提供一个真实的面试体验。文档中的面试官名为Elian,被设定为性格温和冷静且思路清晰的形象,其主要职责是根据用户提供的简历信息和应聘岗位要求,进行一对一的模拟面试。面试官将逐一提出问题,确保每次只提一个问题,并等待候选人的回答结束后再继续下一个问题。面试官需要深入了解应聘岗位的具体要求,包括但不限于业务理解、行业知识、具体技能、专业背景以及项目经历等方面,从而全面评估候选人是否符合岗位需求。此外,文档强调了面试官应在用户主动发起提问后才开始回答,若用户未提供简历,面试官应首先邀请用户提供简历或描述应聘岗位; 适用人群:即将参加面试的求职者,特别是希望提前熟悉面试流程、提升面试技巧的人士; 使用场景及目标:①帮助求职者熟悉面试流程,提高应对实际面试的信心;②通过模拟面试,让求职者能够更好地展示自己的优势,发现自身不足之处并加以改进; 其他说明:此文档为文本格式,用户可以根据文档内容与面试官Elian进行互动,以达到最佳的模拟效果。在整个模拟过程中,用户应尽量真实地回答每一个问题,以便获得最贴近实际情况的反馈。
招聘技巧HR必看如何进行网络招聘和电话邀约.ppt
内容概要:本文详细介绍了利用三菱PLC(特别是FX系列)和组态王软件构建3x3书架式堆垛式立体库的方法。首先阐述了IO分配的原则,明确了输入输出信号的功能,如仓位检测、堆垛机运动控制等。接着深入解析了梯形图编程的具体实现,包括基本的左右移动控制、复杂的自动寻址逻辑,以及确保安全性的限位保护措施。还展示了接线图和原理图的作用,强调了正确的电气连接方式。最后讲解了组态王的画面设计技巧,通过图形化界面实现对立体库的操作和监控。 适用人群:从事自动化仓储系统设计、安装、调试的技术人员,尤其是熟悉三菱PLC和组态王的工程师。 使用场景及目标:适用于需要提高仓库空间利用率的小型仓储环境,旨在帮助技术人员掌握从硬件选型、电路设计到软件编程的全流程技能,最终实现高效稳定的自动化仓储管理。 其他说明:文中提供了多个实用的编程技巧和注意事项,如避免常见错误、优化性能参数等,有助于减少实际应用中的故障率并提升系统的可靠性。
内容概要:本文详细探讨了利用COMSOL进行电弧放电现象的模拟,重点在于采用磁流体方程(MHD)来耦合电磁、热流体和电路等多个物理场。文中介绍了关键的数学模型如磁流体动力学方程、热传导方程以及电路方程,并讨论了求解过程中遇到的技术难题,包括参数敏感性、求解器选择、网格划分等问题。此外,作者分享了许多实践经验,比如如何处理不同物理场之间的相互作用,怎样避免数值不稳定性和提高计算效率。 适用人群:适用于从事电弧放电研究的专业人士,尤其是那些希望通过数值模拟深入了解电弧行为并应用于实际工程项目的人群。 使用场景及目标:①帮助研究人员更好地理解和预测电弧放电过程中的各种物理现象;②为工程师提供优化电气设备设计的方法论支持;③指导使用者正确配置COMSOL软件的相关参数以确保高效稳定的仿真结果。 其他说明:尽管存在较高的计算复杂度和技术挑战,成功的电弧放电仿真能够显著提升对这一重要物理过程的认识水平,并促进相关领域的技术创新和发展。
内容概要:本文详细介绍了如何利用粒子群优化算法(PSO)改进极限学习机(KELM),以提升其在多维输入单维输出数据处理任务中的性能。首先简述了KELM的工作原理及其快速训练的特点,接着深入探讨了PSO算法的机制,包括粒子的速度和位置更新规则。然后展示了如何将PSO应用于优化KELM的关键参数,如输入权值和隐含层偏置,并提供了具体的Python代码实现。通过对模拟数据和实际数据集的实验对比,证明了PSO优化后的KELM在预测精度上有显著提升,尤其是在处理复杂数据时表现出色。 适合人群:对机器学习尤其是深度学习有一定了解的研究人员和技术爱好者,以及从事数据分析工作的专业人士。 使用场景及目标:适用于需要高效处理多维输入单维输出数据的任务,如时间序列预测、回归分析等。主要目标是通过优化模型参数,提高预测准确性并减少人工调参的时间成本。 其他说明:文中不仅给出了详细的理论解释,还附上了完整的代码示例,便于读者理解和实践。此外,还讨论了一些实用技巧,如参数选择、数据预处理等,有助于解决实际应用中的常见问题。
内容概要:本文介绍了利用粒子群算法(PSO)解决微网优化调度问题的方法。主要内容涵盖微网系统的组成(风力、光伏、储能、燃气轮机、柴油机)、需求响应机制、储能SOC约束处理及粒子群算法的具体实现。文中详细描述了目标函数的设计,包括发电成本、启停成本、需求响应惩罚项和SOC连续性惩罚项的计算方法。同时,阐述了粒子群算法的核心迭代逻辑及其参数调整策略,如惯性权重的线性递减策略。此外,还讨论了代码调试过程中遇到的问题及解决方案,并展示了仿真结果,证明了模型的有效性和优越性。 适合人群:从事电力系统优化、智能算法应用的研究人员和技术人员,特别是对微网调度感兴趣的读者。 使用场景及目标:适用于研究和开发微网优化调度系统,旨在提高供电稳定性的同时降低成本。具体应用场景包括但不限于分布式能源管理、工业园区能源调度等。目标是通过合理的调度策略,使微网系统在满足需求响应的前提下,实现经济效益最大化。 其他说明:本文提供的Matlab程序具有良好的模块化设计,便于扩展和维护。建议读者在理解和掌握基本原理的基础上,结合实际情况进行改进和创新。
KUKA机器人相关资料
基于多智能体的高层建筑分阶段火灾疏散仿 真及策略研究.pdf
Iterative Time Series Imputation by Maintaining Dependency Consistency (ACM TKDD 2024)
内容概要:本文详细探讨了带同步整流桥的交错PFC(功率因数校正)电路的设计与仿真实现。交错PFC通过多路PFC电路交错工作,降低了输入电流纹波,提高了功率密度。同步整流桥采用MOSFET代替传统二极管,减少了整流损耗,提升了效率。文中提供了关键代码片段,包括PWM控制、同步整流桥控制逻辑、电流环控制等,并介绍了如何在MATLAB/Simulink中搭建仿真模型,验证设计方案的有效性。此外,还讨论了仿真过程中遇到的问题及其解决方案,如死区时间处理、电流采样精度、负载突变应对等。 适合人群:从事电力电子设计的研究人员和技术工程师,尤其是对PFC技术和同步整流感兴趣的从业者。 使用场景及目标:适用于研究和开发高效的电源管理系统,旨在提高电能利用率,减少谐波污染,优化电源性能。目标是通过仿真实验验证设计方案的可行性,最终应用于实际硬件开发。 其他说明:文章强调了仿真与实际调试的区别,提醒读者在实际应用中需要注意的细节,如电流采样精度、死区时间和负载突变等问题。同时,提供了具体的代码实现和仿真技巧,帮助读者更好地理解和掌握这一复杂的技术。
内容概要:本文详细探讨了MATLAB环境下冷热电气多能互补微能源网的鲁棒优化调度模型。首先介绍了多能耦合元件(如风电、光伏、P2G、燃气轮机等)的运行特性模型,展示了如何通过MATLAB代码模拟这些元件的实际运行情况。接着阐述了电、热、冷、气四者的稳态能流模型及其相互关系,特别是热电联产过程中能流的转换和流动。然后重点讨论了考虑经济成本和碳排放最优的优化调度模型,利用MATLAB优化工具箱求解多目标优化问题,确保各能源设备在合理范围内运行并保持能流平衡。最后分享了一些实际应用中的经验和技巧,如处理风光出力预测误差、非线性约束、多能流耦合等。 适合人群:从事能源系统研究、优化调度、MATLAB编程的专业人士和技术爱好者。 使用场景及目标:适用于希望深入了解综合能源系统优化调度的研究人员和工程师。目标是掌握如何在MATLAB中构建和求解复杂的多能互补优化调度模型,提高能源利用效率,降低碳排放。 其他说明:文中提供了大量MATLAB代码片段,帮助读者更好地理解和实践所介绍的内容。此外,还提及了一些有趣的发现和挑战,如多能流耦合的复杂性、鲁棒优化的应用等。