这个分类只是一个很粗糙的分类,并且截止到今年5月份,此后没有继续更新。
论文包含的也不是很全,但是以小见多未必是一件坏事!
1 Topic modeling for sentiment analysis
1.1 Unsupervised aspect extraction [25]
1.2 Weakly supervised aspect extraction [4, 16, 17, 24, 1, 10]
1.3 Joint sentiment and aspect model[17,15]+our EMNLP paper
2 Supervised opinion extraction[27,6,13]
3 Supervised sentiment classi cation[19,21,18]
4 Other work
4.1 Feature based summary[11,23]
4.2 Identifying sentiment orientation of opinion words[9,11,5,20,23,28,26]
4.3 Opinion spam[14]
4.4 Domain adaption on sentiment classification[3]
5 Opinion dataset
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html
http://www.cs.jhu.edu/ mdredze/datasets/sentiment/index2.html
http://people.dbmi.columbia.edu/noemie/ursa/
http://people.csail.mit.edu/bsnyder/naacl07/
Reference:
[1] D. Blei and J. McAuli e. Supervised topic models. In Advances in Neural Information
Processing Systems, 2007.
[2] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993{1022, 2003.
[3] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification. In Association for
Computational Linguistics, Prague, Czech Republic.
[4] S. R. K. Branavan, Harr Chen, Jacob Eisenstein, and Regina Barzilay. Learning
document-level semantic properties from free-text annotations. J. Artif. Int. Res.,
34(1):569{603, 2009.
[5] Xiaowen Ding, Bing Liu, and Philip S. Yu. A holistic lexicon-based approach to opin-
ion mining. In Proceedings of the Conference on Web Search and Web Data Mining
(WSDM), 2008.
[6] Xiaowen Ding, Bing Liu, and Lei Zhang. Entity discovery and assignment for opinion
mining applications. In KDD '09: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1125{1134, New York, NY,
USA, 2009. ACM.
[7] Gayatree Ganu, Noemie Elhadad, and Amlie Marian. Beyond the stars: Improving
rating predictions using review text content. In WebDB, 2009.
[8] Thomas L. Gri ths and Mark Steyvers. Finding scienti c topics. 2004.
[9] Vasileios Hatzivassiloglou and Kathleen R. McKeown. Predicting the semantic orienta-
tion of adjectives. In Proceedings of the eighth conference on European chapter of the
Association for Computational Linguistics, pages 174{181, Morristown, NJ, USA, 1997.
Association for Computational Linguistics.
[10] Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis.
Mach. Learn., 42(1-2):177{196, 2001.
[11] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In KDD '04:
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 168{177, New York, NY, USA, 2004. ACM.
[12] Wei Jin, Hung Hay Ho, and Rohini K. Srihari. Opinionminer: a novel machine learning
system for web opinion mining and extraction. In KDD '09: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
1195{1204, New York, NY, USA, 2009. ACM.
[13] Nitin Jindal and Bing Liu. Mining comparative sentences and relations. In AAAI'06:
proceedings of the 21st national conference on Arti cial intelligence, pages 1331{1336.
AAAI Press, 2006.
[14] Nitin Jindal and Bing Liu. Opinion spam and analysis. In WSDM '08: Proceedings of
the international conference on Web search and web data mining, pages 219{230, New
York, NY, USA, 2008. ACM.
[15] Chenghua Lin and Yulan He. Joint sentiment/topic model for sentiment analysis. In
CIKM '09: Proceeding of the 18th ACM conference on Information and knowledge man-
agement, pages 375{384, New York, NY, USA, 2009. ACM.
[16] Yue Lu, ChengXiang Zhai, and Neel Sundaresan. Rated aspect summarization of short
comments. In WWW '09: Proceedings of the 18th international conference on World
wide web, pages 131{140, New York, NY, USA, 2009. ACM.
[17] Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang Zhai. Topic
sentiment mixture: modeling facets and opinions in weblogs. In WWW '07: Proceedings
of the 16th international conference on World Wide Web, pages 171{180, New York,
NY, USA, 2007. ACM.
[18] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of the ACL, pages 271{278, 2004.
[19] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classi-
cation using machine learning techniques. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 79{86, 2002.
[20] Ana-Maria Popescu and Oren Etzioni. Extracting product features and opinions from
reviews. In HLT '05: Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing, pages 339{346, Morristown,
NJ, USA, 2005. Association for Computational Linguistics.
[21] Ellen Rilo and Janyce Wiebe. Learning extraction patterns for subjective expressions.
In Proceedings of the 2003 conference on Empirical methods in natural language pro-
cessing, pages 105{112, Morristown, NJ, USA, 2003. Association for Computational
Linguistics.
[22] Benjamin Snyder and Regina Barzilay. Multiple aspect ranking using the good grief al-
gorithm. In In Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association of Computational Linguistics (HLT-NAACL,
pages 300{307, 2007.
[23] Qi Su, Xinying Xu, Honglei Guo, Zhili Guo, Xian Wu, Xiaoxun Zhang, Bin Swen, and
Zhong Su. Hidden sentiment association in chinese web opinion mining. In WWW '08:
Proceeding of the 17th international conference on World Wide Web, pages 959{968,
New York, NY, USA, 2008. ACM.
[24] Ivan Titov and Ryan Mcdonald. A joint model of text and aspect ratings for sentiment
summarization. In Proceedings of ACL-08: HLT, pages 308{316, Columbus, Ohio, June
2008. Association for Computational Linguistics.
[25] Ivan Titov and Ryan McDonald. Modeling online reviews with multi-grain topic models.
In WWW '08: Proceeding of the 17th international conference on World Wide Web,
pages 111{120, New York, NY, USA, 2008. ACM.
[26] Peter D. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews. In ACL '02: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages 417{424, Morristown, NJ, USA,
2002. Association for Computational Linguistics.
[27] Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu. Phrase dependency parsing
for opinion mining. In EMNLP '09: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 1533{1541, Morristown, NJ, USA, 2009.
Association for Computational Linguistics.
[28] Hong Yu and Vasileios Hatzivassiloglou. Towards answering opinion questions: separat-
ing facts from opinions and identifying the polarity of opinion sentences. In Proceedings
of the 2003 conference on Empirical methods in natural language processing, pages 129{
136, Morristown, NJ, USA, 2003. Association for Computational Linguistics.
分享到:
相关推荐
在本项目"基于AdaBoost算法的情感分析研究"中,我们将探讨如何运用机器学习技术,特别是AdaBoost算法,来实现对微博文本的情感分析。这个过程涵盖了数据获取、预处理、初步分类以及利用提升方法优化分类器等多个关键...
基于机器学习的商品评论情感分析模型研究 基于机器学习的商品评论情感分析模型研究是当前计算机领域中的热点方向,旨在开发出能够准确分析在线商品评论的情感倾向的模型。该模型可以为商户和浏览者提供有价值的参考...
### 基于深度学习的文本情感分析研究综述 #### 概述 情感分析作为自然语言处理(NLP)领域的重要组成部分,旨在通过分析主观文本挖掘其中的情感倾向。随着词向量技术的进步以及深度学习在自然语言处理领域的快速...
除了这两个主要任务,文章还提及了其他相关的情感分析问题,如情感强度的量化、情感目标检测、多语种情感分析等,这些都是情感分析研究领域中的重要课题。 总结当前,情感分析已经取得显著成果,但依然面临诸多挑战...
毕业设计项目“基于微博情感分析系统”是一个综合运用Python编程语言和机器学习算法来实现的项目,主要目标是对微博文本进行情感分析,以理解用户的情绪倾向。以下将详细阐述该项目涉及的知识点: 一、微博数据获取...
总结来说,这个“情感分析”数据集是进行情感分析模型开发的重要资源,尤其适用于商品评价场景。通过对评论的分析,企业可以深入了解消费者需求,提升产品竞争力。而作为数据科学家或开发者,我们需要掌握数据预处理...
本文献探讨了网络舆情中语义情感分析的策略,这一研究领域与人工智能技术尤其是深度学习的迅速发展密切相关。网络舆情指的是公众在网络上对于某一事件或话题表达的意见和态度。随着互联网技术的发展,网络已成为人们...
案例的引入和总结强调了情感分析的实际应用价值,并鼓励学生运用所学知识解决实际问题。 此外,案例还提供了配套的教学资源,如PPT、视频、数据集和代码,便于学生自学和实践。推荐使用的编程语言是Python,主要...
高质量的标注数据是情感分析研究的基础。本语料库中,每条评价均经过人工精细标注,确保了情感分类的准确性。标注过程可能包括多位专家的独立判断,以及最后的仲裁决策,以降低误判率。 四、语料库的应用 1. 模型...
文本情感分析的未来研究方向可能包括提高模型在不同领域和不同语言背景下的适应性和准确性,探索更有效的数据增强和迁移学习方法,以及研究更深入的情感分析任务,例如情感因果关系分析、情感极性转移等。...
7. **文本情感分析综述.pdf**: 这是一篇综述文章,可能总结了过去的情感分析研究,梳理了主要的方法论、挑战和未来趋势,对于初学者来说是一份很好的入门资料。 8. **Twitter as a Corpus for Sentiment Analysis ...
总结来说,“情感分析60000”为中文情感分析提供了一套宝贵的资源,不仅可用于训练和测试模型,还可用于情感词典的构建和优化。这个语料库的广泛使用和深入研究,将进一步推动中文情感分析技术的发展,为各种应用...
基于词典与机器学习的藏文微博情感分析研究 本文主要介绍了一种基于词典与机器学习的藏文微博情感分析方法。该方法结合了词典和机器学习算法,实现了对藏文微博情感的分类。文章首先讨论了藏文微博的情感分析问题,...
总结而言,“基于语义的情感分析API XP版”凭借其优秀的查全率和查准率,成为了一款强大的情感分析工具。随着技术的发展,我们期待它在未来能够带来更为精准、深入的情感洞察,赋能更多行业的智能决策。
通过LDA,我们可以识别出评论中隐藏的主题,这些主题可能与商品的质量、服务、价格等关键因素相关,从而帮助进行情感分析。 情感分析通常包括三个主要步骤:预处理、特征提取和模型训练与评估。 1. **预处理**:这...
总结而言,电商评论的情感分析研究通过文本预处理、中文分词、停用词过滤和LDA主题模型等一系列方法,能够高效、准确地分析大量评论数据,识别出消费者的真实感受,从而为商家提供产品优化的依据,为消费者提供购买...
在总结语音情感分析的相关研究时,论文可能会涉及上述话题,并尝试为当前研究方法和进展提供一个全面的视角。对于研究者和开发人员来说,这是一份重要的参考资料,因为它不仅提供了理论知识,还提供了一套实用的方法...
### 情感分析在数据挖掘中的应用 #### 概述 随着互联网的快速发展和社交媒体平台的普及,人们越来越依赖于在线评论、博客和新闻来获取产品和服务的信息。因此,情感分析作为一项重要的数据挖掘技术,能够帮助企业和...
总结,情感分析是现代信息时代的一种关键技术,通过分析文本中的情感倾向,为商业决策、舆情监测、用户体验等多个领域提供了宝贵的洞见。这个毕业设计项目很可能涉及到以上这些概念和技术的实践应用。