memcached的Java客户端有好几种,http://code.google.com/p/memcached/wiki/Clients 罗列了以下几种
- spymemcached
- * http://www.couchbase.org/code/couchbase/java
- o An improved Java API maintained by Matt Ingenthron and others at Couchbase.
- o Aggressively optimised, ability to run async, supports binary protocol, support Membase and Couchbase features, etc. See site for details.
- Java memcached client
- * http://www.whalin.com/memcached
- o A Java API is maintained by Greg Whalin from Meetup.com.
- More Java memcached clients
- * http://code.google.com/p/javamemcachedclient
- * http://code.google.com/p/memcache-client-forjava
- * http://code.google.com/p/xmemcached
- Integrations
- * http://code.google.com/p/simple-spring-memcached
- * http://code.google.com/p/memcached-session-manager
我看的是第二个:Java memcached client源码,代码很简洁,一共只有9个类,最主要的有以下三个
MemcachedClient.java 客户端,负责提供外出程序接口,如get/set方法等等
SockIOPool.java 一个自平衡的连接池
NativeHandler.java 负责部分数据类型的序列化
它包含以下几个部分
1:key的服务端分布
2:数据序列化和压缩
3:连接池(连接方式和池的动态自动平衡)
4:failover和failback机制
5:和memcached服务器的通讯协议
关于这几个点,我从key的set/get说起,会贯穿上面列举的4个部分。这个文章写下来,本来是作为一个笔记,思维比较跳跃,可能不是很连贯,如有疑问,欢迎站内交流。这个client的代码
很简洁明了,我也没有加过多注释,只是理了一个脉络。
从客户端自带的测试代码开始
- package com.meetup.memcached.test;
- import com.meetup.memcached.*;
- import org.apache.log4j.*;
- public class TestMemcached {
- public static void main(String[] args) {
- BasicConfigurator.configure();
- String[] servers = { "127.0.0.1:12000"};
- SockIOPool pool = SockIOPool.getInstance();
- pool.setServers( servers );
- pool.setFailover( true );//故障转移
- pool.setInitConn( 10 ); //初始化连接为10
- pool.setMinConn( 5 );//最小连接为5
- pool.setMaxConn( 250 );//最大连接为250
- pool.setMaintSleep( 30 );//平衡线程休眠时间为30ms
- pool.setNagle( false );//Nagle标志为false
- pool.setSocketTO( 3000 );//响应超时时间为3000ms
- pool.setAliveCheck( true );//需要可用状态检查
- //初始化连接池,默认名称为"default"
- pool.initialize();
- //新建一个memcached客户端,如果没有给名字
- MemcachedClient mcc = new MemcachedClient();
- // turn off most memcached client logging:
- com.meetup.memcached.Logger.getLogger( MemcachedClient.class.getName() ).setLevel( com.meetup.memcached.Logger.LEVEL_WARN );
- for ( int i = 0; i < 10; i++ ) {
- boolean success = mcc.set( "" + i, "Hello!" );
- String result = (String)mcc.get( "" + i );
- System.out.println( String.format( "set( %d ): %s", i, success ) );
- System.out.println( String.format( "get( %d ): %s", i, result ) );
- }
- System.out.println( "\n\t -- sleeping --\n" );
- try { Thread.sleep( 10000 ); } catch ( Exception ex ) { }
- for ( int i = 0; i < 10; i++ ) {
- boolean success = mcc.set( "" + i, "Hello!" );
- String result = (String)mcc.get( "" + i );
- System.out.println( String.format( "set( %d ): %s", i, success ) );
- System.out.println( String.format( "get( %d ): %s", i, result ) );
- }
- }
- }
以上代码大概做了这几件事情:
初始化一个连接池
新建一个memcached客户端
set一个key/value
get一个key,并且打印出value
这是我们实际应用中很常见的场景。
连接池的创建和初始化
连接池SockIOPool是非常重要的部分,它的好坏直接决定了客户端的性能。SockIOPool用一个HashMap持有多个连接池对象,连接池以名称作为标识,默认为"default"。看看
SockIOPool的getInstance方法就知道了。
- public static SockIOPool getInstance() {
- return getInstance("default");
- }
- public static synchronized SockIOPool getInstance(String poolName) {
- if (pools.containsKey(poolName)) return pools.get(poolName);
- SockIOPool pool = new SockIOPool();
- pools.put(poolName, pool);
- return pool;
- }
连接池实例化完成后,还需要初始化,看看pool.initialize()做了什么:
- public void initialize() {
- //这里以自身作为同步锁,防止被多次初始化
- synchronized (this) {
- // 如果已经被初始化了则终止初始化过程
- if (initialized && (buckets != null || consistentBuckets != null) && (availPool != null)&& (busyPool != null)) {
- log.error("++++ trying to initialize an already initialized pool");
- return;
- }
- <span style="color: #ff0000;"> // 可用连接集合</span>
- availPool = new HashMap<String, Map<SockIO, Long>>(servers.length * initConn);
- //工作连接集合
- busyPool = new HashMap<String, Map<SockIO, Long>>(servers.length * initConn);
- // 不可用连接集合
- deadPool = new IdentityHashMap<SockIO, Integer>();
- hostDeadDur = new HashMap<String, Long>();
- hostDead = new HashMap<String, Date>();
- maxCreate = (poolMultiplier > minConn) ? minConn : minConn / poolMultiplier;
- if (log.isDebugEnabled()) {
- log.debug("++++ initializing pool with following settings:");
- log.debug("++++ initial size: " + initConn);
- log.debug("++++ min spare : " + minConn);
- log.debug("++++ max spare : " + maxConn);
- }
- if (servers == null || servers.length <= 0) {
- log.error("++++ trying to initialize with no servers");
- throw new IllegalStateException("++++ trying to initialize with no servers");
- }
- // initalize our internal hashing structures
- if (this.hashingAlg == CONSISTENT_HASH) populateConsistentBuckets();
- else populateBuckets();
- // mark pool as initialized
- this.initialized = true;
- // start maint thread
- if (this.maintSleep > 0) this.startMaintThread();
- }
- }
连接池的关闭
很简单,只是重置清空相关参数而已
- public void shutDown() {
- synchronized (this) {
- if (log.isDebugEnabled()) log.debug("++++ SockIOPool shutting down...");
- if (maintThread != null && maintThread.isRunning()) {
- // stop the main thread
- stopMaintThread();
- // wait for the thread to finish
- while (maintThread.isRunning()) {
- if (log.isDebugEnabled()) log.debug("++++ waiting for main thread to finish run +++");
- try {
- Thread.sleep(500);
- } catch (Exception ex) {
- }
- }
- }
- if (log.isDebugEnabled()) log.debug("++++ closing all internal pools.");
- closePool(availPool);
- closePool(busyPool);
- availPool = null;
- busyPool = null;
- buckets = null;
- consistentBuckets = null;
- hostDeadDur = null;
- hostDead = null;
- maintThread = null;
- initialized = false;
- if (log.isDebugEnabled()) log.debug("++++ SockIOPool finished shutting down.");
- }
- }
连接池的自动平衡
SockIOPool的initialize()方法最后有这么一行代码
// start maint thread
if (this.maintSleep > 0) this.startMaintThread();
这是在初始化完成后,启动线程池平衡线程
- protected void startMaintThread() {
- if (maintThread != null) {
- if (maintThread.isRunning()) {
- log.error("main thread already running");
- } else {
- maintThread.start();
- }
- } else {
- maintThread = new MaintThread(this);
- maintThread.setInterval(this.maintSleep);
- maintThread.start();
- }
- }
MaintThread的run方法
- public void run() {
- this.running = true;
- while (!this.stopThread) {
- try {
- Thread.sleep(interval);
- // if pool is initialized, then
- // run the maintenance method on itself
- if (pool.isInitialized()) pool.selfMaint();
- } catch (Exception e) {
- break;
- }
- }
- this.running = false;
其实最终的平衡方法是SockIOPool.selfMaint()
- protected void selfMaint() {
- if (log.isDebugEnabled()) log.debug("++++ Starting self maintenance....");
- // go through avail sockets and create sockets
- // as needed to maintain pool settings
- Map<String, Integer> needSockets = new HashMap<String, Integer>();
- synchronized (this) {
- // 先统计每个服务器实例的可用连接是否小于最小可用连接数
- for (Iterator<String> i = availPool.keySet().iterator(); i.hasNext();) {
- String host = i.next();
- Map<SockIO, Long> sockets = availPool.get(host);
- if (log.isDebugEnabled()) log.debug("++++ Size of avail pool for host (" + host + ") = "
- + sockets.size());
- // if pool is too small (n < minSpare)
- if (sockets.size() < minConn) {
- // need to create new sockets
- int need = minConn - sockets.size();
- needSockets.put(host, need);
- }
- }
- }
- // 如果小于最小可用连接数,则要新建增加可用连接
- Map<String, Set<SockIO>> newSockets = new HashMap<String, Set<SockIO>>();
- for (String host : needSockets.keySet()) {
- Integer need = needSockets.get(host);
- if (log.isDebugEnabled()) log.debug("++++ Need to create " + need + " new sockets for pool for host: "
- + host);
- Set<SockIO> newSock = new HashSet<SockIO>(need);
- for (int j = 0; j < need; j++) {
- SockIO socket = createSocket(host);
- if (socket == null) break;
- newSock.add(socket);
- }
- newSockets.put(host, newSock);
- }
- // synchronize to add and remove to/from avail pool
- // as well as clean up the busy pool (no point in releasing
- // lock here as should be quick to pool adjust and no
- // blocking ops here)
- synchronized (this) {
- //将新建的连接添加到可用连接集合里
- for (String host : newSockets.keySet()) {
- Set<SockIO> sockets = newSockets.get(host);
- for (SockIO socket : sockets)
- addSocketToPool(availPool, host, socket);
- }
- for (Iterator<String> i = availPool.keySet().iterator(); i.hasNext();) {
- String host = i.next();
- Map<SockIO, Long> sockets = availPool.get(host);
- if (log.isDebugEnabled()) log.debug("++++ Size of avail pool for host (" + host + ") = "
- + sockets.size());
- //如果可用连接超过了最大连接数,则要关闭一些
- if (sockets.size() > maxConn) {
- // need to close down some sockets
- int diff = sockets.size() - maxConn;
- int needToClose = (diff <= poolMultiplier) ? diff : (diff) / poolMultiplier;
- if (log.isDebugEnabled()) log.debug("++++ need to remove " + needToClose
- + " spare sockets for pool for host: " + host);
- for (Iterator<SockIO> j = sockets.keySet().iterator(); j.hasNext();) {
- if (needToClose <= 0) break;
- // remove stale entries
- SockIO socket = j.next();
- long expire = sockets.get(socket).longValue();
- // 这里回收可用连接池的闲置连接,连接设置到可用连接池里时,expire设置为当前时间。如果 (expire + maxIdle) < System.currentTimeMillis()为true,则表
- 明,该连接在可用连接池呆得太久了,需要回收
- if ((expire + maxIdle) < System.currentTimeMillis()) {
- if (log.isDebugEnabled()) log.debug("+++ removing stale entry from pool as it is past its idle timeout and pool is over max spare");
- // remove from the availPool
- deadPool.put(socket, ZERO);
- j.remove();
- needToClose--;
- }
- }
- }
- }
- //清理正在工作的连接集合
- for (Iterator<String> i = busyPool.keySet().iterator(); i.hasNext();) {
- String host = i.next();
- Map<SockIO, Long> sockets = busyPool.get(host);
- if (log.isDebugEnabled()) log.debug("++++ Size of busy pool for host (" + host + ") = "
- + sockets.size());
- // loop through all connections and check to see if we have any hung connections
- for (Iterator<SockIO> j = sockets.keySet().iterator(); j.hasNext();) {
- // remove stale entries
- SockIO socket = j.next();
- long hungTime = sockets.get(socket).longValue();
- //如果工作时间超过maxBusyTime,则也要回收掉,超过maxBusyTime,可能是服务器响应时间过长
- if ((hungTime + maxBusyTime) < System.currentTimeMillis()) {
- log.error("+++ removing potentially hung connection from busy pool ... socket in pool for "
- + (System.currentTimeMillis() - hungTime) + "ms");
- // remove from the busy pool
- deadPool.put(socket, ZERO);
- j.remove();
- }
- }
- }
- }
- // 最后清理不可用连接集合
- Set<SockIO> toClose;
- synchronized (deadPool) {
- toClose = deadPool.keySet();
- deadPool = new IdentityHashMap<SockIO, Integer>();
- }
- for (SockIO socket : toClose) {
- try {
- socket.trueClose(false);
- } catch (Exception ex) {
- log.error("++++ failed to close SockIO obj from deadPool");
- log.error(ex.getMessage(), ex);
- }
- socket = null;
- }
- if (log.isDebugEnabled()) log.debug("+++ ending self maintenance.");
- }
key的服务器端分布
初始化方法其实就是根据每个服务器的权重,建立一个服务器地址集合,如果选择了一致性哈希,则对服务器地址进行一致性哈希分布,一致性哈希算法比较简单,如果不了解的同学,可以
自行google一下,initialize() 方法里有这段代码:
//一致性哈希
- if (this.hashingAlg == CONSISTENT_HASH){
- populateConsistentBuckets();
- }else populateBuckets();
看看populateConsistentBuckets()方法
// 用一致性哈希算法将服务器分布在一个2的32次方的环里,服务器的分布位置<=servers.length*40*4
- private void populateConsistentBuckets() {
- if (log.isDebugEnabled()) log.debug("++++ initializing internal hashing structure for consistent hashing");
- // store buckets in tree map
- this.consistentBuckets = new TreeMap<Long, String>();
- MessageDigest md5 = MD5.get();
- if (this.totalWeight <= 0 && this.weights != null) {
- for (int i = 0; i < this.weights.length; i++)
- this.totalWeight += (this.weights[i] == null) ? 1 : this.weights[i];
- } else if (this.weights == null) {
- this.totalWeight = this.servers.length;
- }
- for (int i = 0; i < servers.length; i++) {
- int thisWeight = 1;
- if (this.weights != null && this.weights[i] != null) thisWeight = this.weights[i];
- //这个值永远小于40 * this.servers.length,因为thisWeight/totalWeight永远小于1
- double factor = Math.floor(((double) (40 * this.servers.length * thisWeight)) / (double) this.totalWeight);
- //服务器的分布位置为factor*4,factor<=40*this.servers.length,所以服务器的分布位置& lt;=40*this.servers.length*4。
- for (long j = 0; j < factor; j++) {
- //md5值的二进制数组为16位
- byte[] d = md5.digest((servers[i] + "-" + j).getBytes());
- //16位二进制数组每4位为一组,每组第4个值左移24位,第三个值左移16位,第二个值左移8位,第一个值不移位。进行或运算,得到一个小于2的32 次方的long值。
- for (int h = 0; h < 4; h++) {
- Long k = ((long) (d[3 + h * 4] & 0xFF) << 24) | ((long) (d[2 + h * 4] & 0xFF) << 16)
- | ((long) (d[1 + h * 4] & 0xFF) << 8) | ((long) (d[0 + h * 4] & 0xFF));
- consistentBuckets.put(k, servers[i]);
- if (log.isDebugEnabled()) log.debug("++++ added " + servers[i] + " to server bucket");
- }
- }
- // create initial connections
- if (log.isDebugEnabled()) log.debug("+++ creating initial connections (" + initConn + ") for host: "
- + servers[i]);
- //创建连接
- for (int j = 0; j < initConn; j++) {
- SockIO socket = createSocket(servers[i]);
- if (socket == null) {
- log.error("++++ failed to create connection to: " + servers[i] + " -- only " + j + " created.");
- break;
- }
- //添加到可用连接池
- addSocketToPool(availPool, servers[i], socket);
- if (log.isDebugEnabled()) log.debug("++++ created and added socket: " + socket.toString()
- + " for host " + servers[i]);
- }
- }
如果不是一致性哈希,则只是普通分布,很简单,只是根据权重将服务器地址放入buckets这个List里
- private void populateBuckets() {
- if (log.isDebugEnabled()) log.debug("++++ initializing internal hashing structure for consistent hashing");
- // store buckets in tree map
- this.buckets = new ArrayList<String>();
- for (int i = 0; i < servers.length; i++) {
- if (this.weights != null && this.weights.length > i) {
- for (int k = 0; k < this.weights[i].intValue(); k++) {
- this.buckets.add(servers[i]);
- if (log.isDebugEnabled()) log.debug("++++ added " + servers[i] + " to server bucket");
- }
- } else {
- this.buckets.add(servers[i]);
- if (log.isDebugEnabled()) log.debug("++++ added " + servers[i] + " to server bucket");
- }
- // create initial connections
- if (log.isDebugEnabled()) log.debug("+++ creating initial connections (" + initConn + ") for host: "
- + servers[i]);
- for (int j = 0; j < initConn; j++) {
- SockIO socket = createSocket(servers[i]);
- if (socket == null) {
- log.error("++++ failed to create connection to: " + servers[i] + " -- only " + j + " created.");
- break;
- }
- //新建连接后,加入到可用连接集合里
- addSocketToPool(availPool, servers[i], socket);
- if (log.isDebugEnabled()) log.debug("++++ created and added socket: " + socket.toString()
- + " for host " + servers[i]);
- }
- }
- }
如何创建socket连接
在上面的private void populateBuckets()方法里,createSocket(servers[i])是创建到服务器的连接,看看这个方法
- protected SockIO createSocket(String host) {
- SockIO socket = null;
- //hostDeadLock是一个可重入锁,它的变量声明为
- private final ReentrantLock hostDeadLock = new ReentrantLock();
- hostDeadLock.lock();
- try {
- //hostDead.containsKey(host)为true表示曾经连接过该服务器,但没有成功。
- //hostDead是一个HashMap,key为服务器地址,value为当时连接不成功的时间
- //hostDeadDur是一个HashMap,key为服务器地址,value为设置的重试间隔时间
- if (failover && failback && hostDead.containsKey(host) && hostDeadDur.containsKey(host)) {
- Date store = hostDead.get(host);
- long expire = hostDeadDur.get(host).longValue();
- if ((store.getTime() + expire) > System.currentTimeMillis()) return null;
- }
- } finally {
- hostDeadLock.unlock();
- }
- try {
- socket = new SockIO(this, host, this.socketTO, this.socketConnectTO, this.nagle);
- if (!socket.isConnected()) {
- log.error("++++ failed to get SockIO obj for: " + host + " -- new socket is not connected");
- deadPool.put(socket, ZERO);
- socket = null;
- }
- } catch (Exception ex) {
- log.error("++++ failed to get SockIO obj for: " + host);
- log.error(ex.getMessage(), ex);
- socket = null;
- }
- // if we failed to get socket, then mark
- // host dead for a duration which falls off
- hostDeadLock.lock();
- try {
- //到了这里,socket仍然为null,说明这个server悲剧了,无法和它创建连接,则要把该server丢到不可用的主机集合里
- if (socket == null) {
- Date now = new Date();
- hostDead.put(host, now);
- //如果上次就不可用了,到期了仍然不可用,就要这次的不可用时间设为上次的2倍,否则初始时长为1000ms
- long expire = (hostDeadDur.containsKey(host)) ? (((Long) hostDeadDur.get(host)).longValue() * 2) : 1000;
- if (expire > MAX_RETRY_DELAY) expire = MAX_RETRY_DELAY;
- hostDeadDur.put(host, new Long(expire));
- if (log.isDebugEnabled()) log.debug("++++ ignoring dead host: " + host + " for " + expire + " ms");
- // 既然这个host都不可用了,那与它的所有连接当然要从可用连接集合"availPool"里删除掉
- clearHostFromPool(availPool, host);
- } else {
- if (log.isDebugEnabled()) log.debug("++++ created socket (" + socket.toString() + ") for host: " + host);
- //连接创建成功,如果上次不成功,那么这次要把该host从不可用主机集合里删除掉
- if (hostDead.containsKey(host) || hostDeadDur.containsKey(host)) {
- hostDead.remove(host);
- hostDeadDur.remove(host);
- }
- }
- } finally {
- hostDeadLock.unlock();
- }
- return socket;
- }
SockIO构造函数
- public SockIO(SockIOPool pool, String host, int timeout, int connectTimeout, boolean noDelay)
- throws IOException,
- UnknownHostException {
- this.pool = pool;
- String[] ip = host.split(":");
- // get socket: default is to use non-blocking connect
- sock = getSocket(ip[0], Integer.parseInt(ip[1]), connectTimeout);
- if (timeout >= 0) this.sock.setSoTimeout(timeout);
- // testing only
- sock.setTcpNoDelay(noDelay);
- // wrap streams
- in = new DataInputStream(new BufferedInputStream(sock.getInputStream()));
- out = new BufferedOutputStream(sock.getOutputStream());
- this.host = host;
- }
getSocket方法
- protected static Socket getSocket(String host, int port, int timeout) throws IOException {
- SocketChannel sock = SocketChannel.open();
- sock.socket().connect(new InetSocketAddress(host, port), timeout);
- return sock.socket();
- }
可以看到,socket连接是用nio方式创建的。
新建MemcachedClient
MemcachedClient mcc = new MemcachedClient();新建了一个memcached客户端,看看构造函数,没作什么,只是设置参数而已。
- /**
- * Creates a new instance of MemCachedClient.
- */
- public MemcachedClient() {
- init();
- }
- private void init() {
- this.sanitizeKeys = true;
- this.primitiveAsString = false;
- this.compressEnable = true;
- this.compressThreshold = COMPRESS_THRESH;
- this.defaultEncoding = "UTF-8";
- this.poolName = ( this.poolName == null ) ? "default" : this.poolName;
- // get a pool instance to work with for the life of this instance
- this.pool = SockIOPool.getInstance( poolName );
- }
set方法如何工作
到此memcached客户端初始化工作完成。再回到测试类TestMemcached,看看for循环里的
boolean success = mcc.set( "" + i, "Hello!" );
String result = (String)mcc.get( "" + i );
初始化后,就可以set,get了。看看set是怎么工作的。
- /**
- * Stores data on the server; only the key and the value are specified.
- *
- * @param key key to store data under
- * @param value value to store
- * @return true, if the data was successfully stored
- */
- public boolean set( String key, Object value ) {
- return set( "set", key, value, null, null, primitiveAsString );
- }
- //这个set方法比较长
- private boolean set( String cmdname, String key, Object value, Date expiry, Integer hashCode, boolean asString ) {
- if ( cmdname == null || cmdname.trim().equals( "" ) || key == null ) {
- log.error( "key is null or cmd is null/empty for set()" );
- return false;
- }
- try {
- key = sanitizeKey( key );
- }
- catch ( UnsupportedEncodingException e ) {
- // if we have an errorHandler, use its hook
- if ( errorHandler != null )
- errorHandler.handleErrorOnSet( this, e, key );
- log.error( "failed to sanitize your key!", e );
- return false;
- }
- if ( value == null ) {
- log.error( "trying to store a null value to cache" );
- return false;
- }
- // get SockIO obj
- SockIOPool.SockIO sock = pool.getSock( key, hashCode );
- if ( sock == null ) {
- if ( errorHandler != null )
- errorHandler.handleErrorOnSet( this, new IOException( "no socket to server available" ), key );
- return false;
- }
- if ( expiry == null )
- expiry = new Date(0);
- // store flags
- int flags = 0;
- // byte array to hold data
- byte[] val;
- //这些类型自己序列化,否则由java序列化处理
- if ( NativeHandler.isHandled( value ) ) {
- if ( asString ) {
- //如果是字符串,则直接getBytes
- try {
- if ( log.isInfoEnabled() )
- log.info( "++++ storing data as a string for key: " + key + " for class: " + value.getClass().getName() );
- val = value.toString().getBytes( defaultEncoding );
- }
- catch ( UnsupportedEncodingException ue ) {
- // if we have an errorHandler, use its hook
- if ( errorHandler != null )
- errorHandler.handleErrorOnSet( this, ue, key );
- log.error( "invalid encoding type used: " + defaultEncoding, ue );
- sock.close();
- sock = null;
- return false;
- }
- }
- else {
- try {
- if ( log.isInfoEnabled() )
- log.info( "Storing with native handler..." );
- flags |= NativeHandler.getMarkerFlag( value );
- val = NativeHandler.encode( value );
- }
- catch ( Exception e ) {
- // if we have an errorHandler, use its hook
- if ( errorHandler != null )
- errorHandler.handleErrorOnSet( this, e, key );
- log.error( "Failed to native handle obj", e );
- sock.close();
- sock = null;
- return false;
- }
- }
- }
- else {
- // 否则用java的序列化
- try {
- if ( log.isInfoEnabled() )
- log.info( "++++ serializing for key: " + key + " for class: " + value.getClass().getName() );
- ByteArrayOutputStream bos = new ByteArrayOutputStream();
- (new ObjectOutputStream( bos )).writeObject( value );
- val = bos.toByteArray();
- flags |= F_SERIALIZED;
- }
- catch ( IOException e ) {
- // if we have an errorHandler, use its hook
- if ( errorHandler != null )
- errorHandler.handleErrorOnSet( this, e, key );
- // if we fail to serialize, then
- // we bail
- log.error( "failed to serialize obj", e );
- log.error( value.toString() );
- // return socket to pool and bail
- sock.close();
- sock = null;
- return false;
- }
- }
- //压缩内容
- if ( compressEnable && val.length > compressThreshold ) {
- try {
- if ( log.isInfoEnabled() ) {
- log.info( "++++ trying to compress data" );
- log.info( "++++ size prior to compression: " + val.length );
- }
- ByteArrayOutputStream bos = new ByteArrayOutputStream( val.length );
- GZIPOutputStream gos = new GZIPOutputStream( bos );
- gos.write( val, 0, val.length );
- gos.finish();
- gos.close();
- // store it and set compression flag
- val = bos.toByteArray();
- flags |= F_COMPRESSED;
- if ( log.isInfoEnabled() )
- log.info( "++++ compression succeeded, size after: " + val.length );
- }
- catch ( IOException e ) {
- // if we have an errorHandler, use its hook
- if ( errorHandler != null )
- errorHandler.handleErrorOnSet( this, e, key );
- log.error( "IOException while compressing stream: " + e.getMessage() );
- log.error( "storing data uncompressed" );
- }
- }
- // now write the data to the cache server
- try {
- //按照memcached协议组装命令
- String cmd = String.format( "%s %s %d %d %d\r\n", cmdname, key, flags, (expiry.getTime() / 1000), val.length );
- sock.write( cmd.getBytes() );
- sock.write( val );
- sock.write( "\r\n".getBytes() );
- sock.flush();
- // get result code
- String line = sock.readLine();
- if ( log.isInfoEnabled() )
- log.info( "++++ memcache cmd (result code): " + cmd + " (" + line + ")" );
- if ( STORED.equals( line ) ) {
- if ( log.isInfoEnabled() )
- log.info("++++ data successfully stored for key: " + key );
- sock.close();
- sock = null;
- return true;
- }
- else if ( NOTSTORED.equals( line ) ) {
- if ( log.isInfoEnabled() )
- log.info( "++++ data not stored in cache for key: " + key );
- }
- else {
- log.error( "++++ error storing data in cache for key: " + key + " -- length: " + val.length );
- log.error( "++++ server response: " + line );
- }
- }
- catch ( IOException e ) {
- // if we have an errorHandler, use its hook
- if ( errorHandler != null )
- errorHandler.handleErrorOnSet( this, e, key );
- // exception thrown
- log.error( "++++ exception thrown while writing bytes to server on set" );
- log.error( e.getMessage(), e );
- try {
- sock.trueClose();
- }
- catch ( IOException ioe ) {
- log.error( "++++ failed to close socket : " + sock.toString() );
- }
- sock = null;
- }
- //用完了,就要回收哦,sock.close()不是真正的关闭,只是放入到可用连接集合里。
- if ( sock != null ) {
- sock.close();
- sock = null;
- }
- return false;
- }
通过set方法向服务器设置key和value,涉及到以下几个点
数据的压缩和序列化 (如果是get方法,则和set方法基本是相反的)
为key分配服务器 对于一些常用类型,采用自定义的序列化,具体要看NativeHander.java,这个类比较简单,有兴趣可以自己看看
- public static boolean isHandled( Object value ) {
- return (
- value instanceof Byte ||
- value instanceof Boolean ||
- value instanceof Integer ||
- value instanceof Long ||
- value instanceof Character ||
- value instanceof String ||
- value instanceof StringBuffer ||
- value instanceof Float ||
- value instanceof Short ||
- value instanceof Double ||
- value instanceof Date ||
- value instanceof StringBuilder ||
- value instanceof byte[]
- )
- ? true
- : false;
- }
其他类型则用java的默认序列化
为key选择服务器
SockIOPool.SockIO sock = pool.getSock( key, hashCode );就是为key选择服务器
- public SockIO getSock(String key, Integer hashCode) {
- if (log.isDebugEnabled()) log.debug("cache socket pick " + key + " " + hashCode);
- if (!this.initialized) {
- log.error("attempting to get SockIO from uninitialized pool!");
- return null;
- }
- // if no servers return null
- if ((this.hashingAlg == CONSISTENT_HASH && consistentBuckets.size() == 0)
- || (buckets != null && buckets.size() == 0)) return null;
- // if only one server, return it
- if ((this.hashingAlg == CONSISTENT_HASH && consistentBuckets.size() == 1)
- || (buckets != null && buckets.size() == 1)) {
- SockIO sock = (this.hashingAlg == CONSISTENT_HASH) ? getConnection(consistentBuckets.get(consistentBuckets.firstKey())) : getConnection(buckets.get(0));
- if (sock != null && sock.isConnected()) {
- if (aliveCheck) {//健康状态检查
- if (!sock.isAlive()) {
- sock.close();
- try {
- sock.trueClose();//有问题,真的关闭socket
- } catch (IOException ioe) {
- log.error("failed to close dead socket");
- }
- sock = null;
- }
- }
- } else {//连接不正常,放入不可用连接集合里
- if (sock != null) {
- deadPool.put(sock, ZERO);
- sock = null;
- }
- }
- return sock;
- }
- Set<String> tryServers = new HashSet<String>(Arrays.asList(servers));
- // get initial bucket
- long bucket = getBucket(key, hashCode);
- String server = (this.hashingAlg == CONSISTENT_HASH) ? consistentBuckets.get(bucket) : buckets.get((int) bucket);
- while (!tryServers.isEmpty()) {
- // try to get socket from bucket
- SockIO sock = getConnection(server);
- if (log.isDebugEnabled()) log.debug("cache choose " + server + " for " + key);
- if (sock != null && sock.isConnected()) {
- if (aliveCheck) {
- if (sock.isAlive()) {
- return sock;
- } else {
- sock.close();
- try {
- sock.trueClose();
- } catch (IOException ioe) {
- log.error("failed to close dead socket");
- }
- sock = null;
- }
- } else {
- return sock;
- }
- } else {
- if (sock != null) {
- deadPool.put(sock, ZERO);
- sock = null;
- }
- }
- // if we do not want to failover, then bail here
- if (!failover) return null;
- // log that we tried
- tryServers.remove(server);
- if (tryServers.isEmpty()) break;
- //注意哦,下面是failover机制
- int rehashTries = 0;
- while (!tryServers.contains(server)) {
- String newKey = String.format("%s%s", rehashTries, key);
- if (log.isDebugEnabled()) log.debug("rehashing with: " + newKey);
- bucket = getBucket(newKey, null);
- server = (this.hashingAlg == CONSISTENT_HASH) ? consistentBuckets.get(bucket) : buckets.get((int) bucket);
- rehashTries++;
- }
- }
- return null;
- }
下面这个方法是真正的从服务器获取连接
- public SockIO getConnection(String host) {
- if (!this.initialized) {
- log.error("attempting to get SockIO from uninitialized pool!");
- return null;
- }
- if (host == null) return null;
- synchronized (this) {
- // if we have items in the pool
- // then we can return it
- if (availPool != null && !availPool.isEmpty()) {
- // take first connected socket
- Map<SockIO, Long> aSockets = availPool.get(host);
- if (aSockets != null && !aSockets.isEmpty()) {
- for (Iterator<SockIO> i = aSockets.keySet().iterator(); i.hasNext();) {
- SockIO socket = i.next();
- if (socket.isConnected()) {
- if (log.isDebugEnabled()) log.debug("++++ moving socket for host (" + host
- + ") to busy pool ... socket: " + socket);
- // remove from avail pool
- i.remove();
- // add to busy pool
- addSocketToPool(busyPool, host, socket);
- // return socket
- return socket;
- } else {
- // add to deadpool for later reaping
- deadPool.put(socket, ZERO);
- // remove from avail pool
- i.remove();
- }
- }
- }
- }
- }
- // create one socket -- let the maint thread take care of creating more
- SockIO socket = createSocket(host);
- if (socket != null) {
- synchronized (this) {
- addSocketToPool(busyPool, host, socket);
- }
- }
- return socket;
- }
failover和failback
这两者都是发生在获取可用连接这个环节。
failover,如果为key选择的服务器不可用,则对key重新哈希选择下一个服务器,详见getSock方法的末尾。
failback,用一个hashmap存储连接失败的服务器和对应的失效持续时间,每次获取连接时,都探测是否到了重试时间。
相关推荐
易语言是一种专为中国人设计的编程语言,它以简体中文作为编程语法,降低了编程的门槛,使得更多非计算机专业的人也能进行程序开发。...同时,源码分析也有助于提高编程技能,理解网络编程和分布式系统的设计思想。
**Memcached Java源码分析——Performance分支** Memcached是一款高性能的分布式内存对象缓存系统,广泛应用于Web应用中,用于缓解数据库的负载。在Java环境中,我们常常使用Java客户端库来与Memcached服务器进行...
- **Memcached客户端连接器**:初始化和管理到Memcached服务器的连接,如建立Socket连接,处理心跳机制,保持会话活跃。 - **Key-Value操作接口**:封装了基本的set、get、delete等操作,供应用层调用。 - **配置...
源码分析部分,你可以深入研究`MyMemcachedCache`类的实现,理解如何使用Memcached客户端API进行数据的存取。此外,`spymemcached`库中的源码也能帮助你理解Memcached与Java的交互过程。 文档方面,`doc`目录下的...
**memcached源码分析** `memcached`是一个高性能、分布式内存对象缓存系统,用于在动态系统中减少数据库负载,提升应用性能。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站的响应速度。本文...
4. **Memcached与源码分析** - 源码阅读可以帮助开发者理解Memcached的内存管理、数据结构、网络通信等核心部分,为自定义扩展或优化提供基础。 - Memcached的内存管理采用了slab分配器,将内存划分为不同的slabs...
一、安卓客户端源码分析 1. 用户界面(UI)设计:安卓客户端的界面设计通常基于Android Studio,使用XML布局文件构建各种视图组件,如TextView、EditText、ImageView等,实现类似微博的发帖、浏览、评论等功能。此...
#### 使用Cache::Memcached客户端 - **连接memcached**: 首先需要创建一个`Cache::Memcached`对象实例,并指定memcached服务器的地址和端口。 - **保存数据**: 通过`set`方法保存键值对到缓存中,例如`$cache->set...
**标题解析:** "memcached之客户端memadmin安装" 这个标题涉及到的是关于`memcached`的一...通过上述分析,我们可以构建一个全面的`memcached`客户端`memadmin`的安装和使用教程,帮助用户更好地理解和掌握这一工具。
通过对Memcached源码的深入分析,我们不仅理解了其核心功能是如何实现的,还掌握了如何更高效地使用它来提升Web应用的性能。了解这些内部细节对于优化应用程序的缓存策略以及故障排查具有重要意义。
### Memcached源代码分析 #### 一、Memcached概述与背景 Memcached是一个高效、开源、分布式的内存对象缓存系统,旨在通过减轻数据库负担,加速动态Web应用程序的响应速度。它通过在内存中存储键值对的形式缓存...
**Memcached开源库源码分析** Memcached是一款高性能、分布式内存对象缓存系统,它广泛应用于Web应用中,用于减轻数据库的负载,提高数据访问速度。这个开源库提供了高效的键值存储服务,允许应用程序快速存取临时...
本文将深入探讨Memcached的基本概念、工作原理、安装配置、使用方法以及源码分析。 **一、Memcached基本概念** 1. **缓存**: 缓存是一种存储技术,用于临时存储频繁访问的数据,减少对后端慢速存储(如数据库)的...
**memcached1.4.5源代码分析** `memcached`是一种高性能、分布式内存对象缓存系统,用于在Web应用程序中存储数据,以减少数据库负载。它的设计目标是减轻数据库的负担,通过缓存经常访问的数据来提高网络应用的响应...
在本文中,我们将深入探讨如何在C# ASP.NET项目中使用Memcached客户端进行缓存操作。Memcached是一种高性能、分布式内存对象缓存系统,广泛应用于缓解数据库负载,提高Web应用程序的响应速度。以下是一个关于如何...
通过分析这些源码,我们可以深入理解如何在易语言环境中构建网络客户端,如何解析和构建Memcached协议的请求和响应,以及如何处理网络通信中的异常和错误。 这个模块可能包括以下几个关键部分: 1. 连接管理:建立...
Spring Memcached 是一个用于在Spring应用中集成Memcached缓存服务的框架。Memcached是一种分布式内存对象缓存系统,常用于提高网站数据读取...通过源码分析,我们可以了解其工作原理,并根据实际需求进行调整和优化。
**memCache源码分析——Java客户端** memCache是一款高性能、分布式的内存对象缓存系统,常用于减轻数据库的负载,提升应用性能。它的主要特点是基于内存存储,操作速度快,无持久化机制,适用于缓存非关键数据。在...
2. **源码分析**:帮助开发者理解Memcached的内部实现,包括其数据结构、网络通信机制、线程模型和内存管理等。 3. **Memcached命令行工具**:如`telnet`命令行操作,以及如何进行基本的添加、删除、查看缓存项。 ...