首先来看看如何创建线程:
Console.WriteLine(Process.GetCurrentProcess().Threads.Count); Thread t1 = new Thread(() => { Thread.Sleep(1000); Thread t = Thread.CurrentThread; Console.WriteLine("Name: " + t.Name); Console.WriteLine("ManagedThreadId: " + t.ManagedThreadId); Console.WriteLine("State: " + t.ThreadState); Console.WriteLine("Priority: " + t.Priority); Console.WriteLine("IsBackground: " + t.IsBackground); Console.WriteLine("IsThreadPoolThread: " + t.IsThreadPoolThread); }) { Name = "Thread1", Priority = ThreadPriority.Highest }; t1.Start(); Console.WriteLine(Process.GetCurrentProcess().Threads.Count);
我们在Thread的构造方法中传入一个Lambda表达式,对应ThreadStart委托(无参void返回值的方法)来构造一个线程任务。这段程序中有几个注意点:
1)从输出结果中可以看到,当前程序启动后就3三个线程,新开线程后显示为4个线程,在线程方法中休眠了一秒,防止主线程执行完次线程就过早结束了。UI框架示例分享
2)我们可以为线程设置一个名字,方便调试。我们也可以设置线程的优先级,这个在之后会有进一步介绍。
3)第7行,托管线程的唯一标识符,微软建议使用托管线程的Id而不是操作系统中线程的Id来跟踪线程。
4)第10行代码输出了当前线程不是后台线程,也就是是前台线程,这是默认值。进程会等待前台线程结束结束,而如果是后台线程的话,所有前台线程结束后后台线程自动终止。对于Windows GUI应用程序来说,使用后台线程很可能发生诡异现象,也就是在程序从任务管理器的应用程序一栏中消失后其进程还在,只能通过手动终止进程来释放内存。
5)第11行代码表明这个线程不是由线程池创建的,有关线程池见后文的介绍。
那么我们再来看看如何为线程传入参数,一种方式是使用匹配ParameterizedThreadStart委托(object参数void返回值)的方法:
new Thread((date) => Console.WriteLine(((DateTime)date).ToString())).Start(DateTime.Now);
由于参数是object类型的,我们在使用的时候不得不进行转换,而且还有一个问题就是不支持多个参数,如果要多个参数的话只能使用自定义的对象进行包装,我们还可以使用另外一种方法,那就是使用一个无参方法来包装线程方法主体:
new Thread(() => Add(1, 2)).Start();
static void Add(int i, int j) { Console.WriteLine(i + j); }
上述几行代码的运行结果如下:
再来看一下后台线程前台线程:
new Thread(() => Console.ReadLine()) { IsBackground = false }.Start();
这是默认情况,可以看到控制台一直在等待用户的输入,按回车后程序结束,如果把IsBackground属性设置为true的话,可以看到程序在运行后马上接结束了,并没有等待线程方法的结束。UI框架示例分享
之前说过线程的优先级属性,我们做一个实验:
bool b = true; new Thread(() => { while (b) { i++; } }) { Priority = ThreadPriority.Highest }.Start(); new Thread(() => { while (b) { j++; } }) { Priority = ThreadPriority.Lowest }.Start(); Thread.Sleep(1000); b = false; Console.WriteLine("i: {0}, j: {1}", i, j);
开启两个线程做的事情很简单,累加一个静态变量的值,一个优先级最高,一个优先级最低,然后让主线程等待1秒输出结果:
从结果中可以看到,优先级高的线程得到运行的次数比优先级低的线程多那么一点,但即使是最低优先级的线程都有很大的机会来执行。
现在再来看看线程的中断:
Thread t2 = new Thread(() => { try { while (true) { Console.WriteLine(Thread.CurrentThread.ThreadState); Thread.Sleep(1000); } } catch (ThreadAbortException abortException) { Console.WriteLine("catch"); Console.WriteLine(Thread.CurrentThread.ThreadState); Console.WriteLine((string)abortException.ExceptionState); } }); t2.Start(); Thread.Sleep(2000); t2.Abort("haha"); Thread.Sleep(100); Console.WriteLine(t2.ThreadState);
在线程方法中,我们1秒输出一次线程的状态,然后主线程休眠2秒后中断线程,略微等待一点时间,等线程中断结束后再获取一次线程的状态。可以看到:
每一秒出现一次Running,2秒后由于线程中断处罚ThreadAbortException进入catch块,此时线程的状态是AbortRequested,也能接受到我们中断线程时传入的状态信息,最后线程的状态为Stopped。UI框架示例分享
现在再来看看线程的Join,用于阻塞调用线程等Join的线程完成,或传入一个时间,阻塞一定的时间:
Thread t3 = new Thread(() => { for (int k = 0; k < 10; k++) { Thread.Sleep(100); Console.Write("X"); } Console.WriteLine(); }); Thread t4 = new Thread(() => { for (int k = 0; k < 10; k++) { Thread.Sleep(100); Console.Write("Y"); } Console.WriteLine(); }); t3.Start(); t3.Join(TimeSpan.FromMilliseconds(500)); t4.Start(); Console.WriteLine();
这里可以看到,启动t3之后,我们让主线程阻塞500毫秒,这样的话t3应该已经输出若干X了,然后我们启动t4,随后的500毫秒,t3和t4交替输出X和Y,最后500毫秒由于t3已经结束,所以只会输出Y:
最后,再来看一个有趣的问题:
我们设置一个静态字段:
static int threadstaticvalue;
然后创建两个线程来循环累加这个值:
new Thread(() => { for (int l = 0; l < 100000; l++) { threadstaticvalue++; } Console.WriteLine("from {0}: {1}", Thread.CurrentThread.Name, threadstaticvalue); }) { Name = "1" }.Start(); new Thread(() => { for (int m = 0; m < 200000; m++) { threadstaticvalue++; } Console.WriteLine("from {0}: {1}", Thread.CurrentThread.Name, threadstaticvalue); }) { Name = "2" }.Start();
运行几次输出结果如下:
虽然我们在代码中指定了两个线程分别累加值10万次和20万次,但是可以看到输出结果五花八门!这是因为两个线程都访问了共享的静态字段,可能错开访问可能正巧同步。其实,在静态字段上加上一个ThreadStatic特性就可以解决:资源分享
[ThreadStatic] static int threadstaticvalue;
线程同步这个话题很大,我们下次接着讨论。
相关推荐
内容概要:本文全面介绍了Scratch编程语言,包括其历史、发展、特点、主要组件以及如何进行基本和进阶编程操作。通过具体示例,展示了如何利用代码块制作动画、游戏和音乐艺术作品,并介绍了物理模拟、网络编程和扩展库等功能。 适合人群:编程初学者、教育工作者、青少年学生及对编程感兴趣的各年龄段用户。 使用场景及目标:①帮助初学者理解编程的基本概念和逻辑;②提高学生的创造力、逻辑思维能力和问题解决能力;③引导用户通过实践掌握Scratch的基本和高级功能,制作个性化作品。 其他说明:除了基础教学,文章还提供了丰富的学习资源和社区支持,帮助用户进一步提升技能。
mmexport1734874094130.jpg
基于simulink的悬架仿真模型,有主动悬架被动悬架天棚控制半主动悬架 [1]基于pid控制的四自由度主被动悬架仿真模型 [2]基于模糊控制的二自由度仿真模型,对比pid控制对比被动控制,的比较说明 [3]基于天棚控制的二自由度悬架仿真 以上模型,说明文档齐全,仿真效果明显
内容概要:本文档是《组合数学答案-网络流传版.pdf》的内容,主要包含了排列组合的基础知识以及一些经典的组合数学题目。这些题目涵盖了从排列数计算、二项式定理的应用到容斥原理的实际应用等方面。通过对这些题目的解析,帮助读者加深对组合数学概念和技巧的理解。 适用人群:适合初学者和有一定基础的学习者。 使用场景及目标:可以在学习组合数学课程时作为练习题参考,也可以在复习考试或准备竞赛时使用,目的是提高解决组合数学问题的能力。 其他说明:文档中的题目覆盖了组合数学的基本知识点,适合逐步深入学习。每个题目都有详细的解答步骤,有助于读者掌握解题思路和方法。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
操作系统实验 Ucore lab5
基于matlab开发的学生成绩管理系统GUI界面,可以实现学生成绩载入,显示,处理及查询。
老版本4.0固件,(.dav固件包),支持7700N-K4,7900N-K4等K51平台,升级后出现异常或变砖可使用此版本。请核对自己的机器信息,确认适用后在下载。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
YOLO算法-杂草检测项目数据集-3970张图像带标签-杂草.zip
E008 库洛米(3页).zip
内容概要:本文详细阐述了基于西门子PLC的晶圆研磨机自动控制系统的设计与实现。该系统结合了传感器技术、电机驱动技术和人机界面技术,实现了晶圆研磨过程的高精度和高效率控制。文中详细介绍了控制系统的硬件选型与设计、软件编程与功能实现,通过实验测试和实际应用案例验证了系统的稳定性和可靠性。 适合人群:具备一定的自动化控制和机械设计基础的工程师、研究人员以及从事半导体制造的技术人员。 使用场景及目标:本研究为半导体制造企业提供了一种有效的自动化解决方案,旨在提高晶圆研磨的质量和生产效率,降低劳动强度和生产成本。系统适用于不同规格晶圆的研磨作业,可以实现高精度、高效率、自动化的晶圆研磨过程。 阅读建议:阅读本文时,重点关注晶圆研磨工艺流程和技术要求,控制系统的硬件和软件设计方法,以及实验测试和结果分析。这将有助于读者理解和掌握该自动控制系统的实现原理和应用价值。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
深圳建筑安装公司“挖掘机安全操作规程”
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
大题解题方法等4个文件.zip
保障性安居工程考评内容和评价标准.docx
监督机构检查记录表.docx
该项目适合初学者进行学习,有效的掌握java、swing、mysql等技术的基础知识。资源包含源码、视频和文档 资源下载|如果你正在做毕业设计,需要源码和论文,各类课题都可以,私聊我。 商务合作|如果你是在校大学生,正好你又懂语言编程,或者你可以找来需要做毕设的伙伴,私聊我。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
218) Leverage - 创意机构与作品集 WordPress 主题 2.2.7.zip