自然语言处理定义:
自然语言处理是一门计算机科学、人工智能以及语言学的交叉学科。虽然语言只是人工智能的一部分(人工智能还包括计算机视觉等),但它是非常独特的一部分。这个星球上有许多生物拥有超过人类的视觉系统,但只有人类才拥有这么高级的语言。
自然语言处理的目标是让计算机处理或说“理解”自然语言,以完成有意义的任务,比如订机票购物或QA等。完全理解和表达语言是极其困难的,完美的语言理解等效于实现人工智能。
自然语言处理涉及的几个层次:
作为输入一共有两个来源,语音与文本。所以第一级是语音识别和OCR或分词(事实上,跳过分词虽然理所当然地不能做句法分析,但字符级也可以直接做不少应用)。接下来是形态学,援引《统计自然语言处理》中的定义:形态学(morphology):形态学(又称“词汇形态学”或“词法”)是语言学的一个分支,研究词的内部结构,包括屈折变化和构词法两个部分。由于词具有语音特征、句法特征和语义特征,形态学处于音位学、句法学和语义学的结合部位,所以形态学是每个语言学家都要关注的一门学科。
Hanlp自然语言处理开发包:
从事大数据方面工作的人对自然语言处理必然都是不陌生的,在Github上用户量最多的开源汉语自然语言处理工具是HanLP。HanLP的初始版本是在2014年初开发的,3月份的时候开始在Github上开源。2015年的时候集成在了大快搜索的DKNLP中,目前大快已经把DKNLP技术成果已经开源,并且整体装如HanLP项目,HanLP的版本已经到了V1.50。
Hanlp自然语言处理技术优势:
支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义词调、词性标注),命名实体识别(中国人民、音译人民、日本人民,地名,实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析(MaxEnt依存句法分析、神经网络依存句法分析)。提供Lucene查件,兼容Solr和ElasticSearch。
Hanlp自然语言处理应用领域:
Hanlp已经被广泛应用于Lucene、Solr、ElasticSearch、hadoop、android、Resin等平台,有大量开源作者开发各种查件与拓展,并且被包装或移植到Python、C#、R、JavaScript等语言上去。
相关推荐
在"hanlp 自然语言处理入门"的学习资料中,我们可以期待涵盖一系列基础到进阶的NLP概念和技术。这里我们将深入探讨其中的关键知识点。 首先,Python-3.8.10-amd64.exe是一个Python编程环境的安装程序,Python是NLP...
在本项目"hanlp-python_spiderpbl_ch11/11.5.py_自然语言处理入门_"中,我们将探讨使用Python进行NLP的实践应用。 `11.5.py`可能是一个章节练习或示例代码,对应何晗先生的书籍关于自然语言处理的部分。这个Python...
《深入探索HanLP自然语言处理》 在信息技术日益发展的今天,自然语言处理(Natural Language Processing,简称NLP)已经成为人工智能领域的重要组成部分。HanLP,全称为“哈工大讯飞自然语言处理工具包”,是由一...
hanlp上相关代码文件面向生产环境的多语种自然语言处理工具包,基于 TensorFlow 2.x,目标是普及落地最前沿的NLP技术。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。目前,基于深度学习的...
该项目是一个基于Python和Java的HanLP中文自然语言处理设计源码,包含614个文件,涵盖442个Python脚本、149个Markdown文档、8个reStructuredText文件、8个Java源文件、2个YAML配置文件、1个Git忽略文件、1个许可证...
本项目为基于Python开发的HanLP中文自然语言处理源码,总文件量达198个,涵盖192个Python源文件、3个Markdown文档、1个YAML配置文件、1个Git忽略文件以及1个LICENSE文件。该源码集成了丰富的自然语言处理功能,包括...
本项目是一款基于Python和Java语言的HanLP中文自然语言处理设计源码,包含共计589个文件,其中包括420个Python源文件、146个Markdown文档、8个RestructuredText文件、6个Java源文件、2个YAML文件、2个Python扩展模块...
HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用.HanLP具备功能完善,性能高效,架构清晰,语料时新,可自定义的特点。 HanLP提供下列功能: 中文...
HanLP自然语言处理入门 某知乎er推荐的书籍 Step 3 深度学习框架学习 动手学习深度学习pytorch版 Step 4 实战 一个简单的慕课入门上机实践 YSDA Natural Language Processing course NLP入门学习 Step 0 了解...
基于HanLP自然语言处理包的elasticsearch分词器 功能 本分词器使用HanLP提供的维特比分词 屏蔽了本地配置用户词典 增加同义词索引功能 增加远程词典热更新(用户词典,停词典,同义词典) 使用 目前支持的es版本为...
本项目为hanLP自然语言处理框架的设计源码,主要采用Python编写,辅以Java进行跨平台开发。项目文件共计660个,其中包括475个Python源文件、157个Markdown文档、13个Java源文件、8个reStructuredText文件、2个YAML...
该项目是一款基于Python和Java的HanLP自然语言处理设计源码,总文件量为610个,涵盖438个Python源文件、149个Markdown文档、8个ReStructuredText文件、8个Java源文件、2个YAML配置文件、1个Git忽略文件、1个LICENSE...
在本项目中,我们主要探讨的是如何利用HanLP自然语言处理包来构建一个自定义的Elasticsearch分词器。Elasticsearch是一个流行的开源搜索引擎,它广泛应用于大数据分析和信息检索。自然语言处理(NLP)是人工智能的一...
该项目是一个基于Python和Java的HanLP自然语言处理工具设计源码,总共有593个文件,其中包括422个Python源文件、146个Markdown文档、8个ReStructuredText文件、8个Java源文件、2个YAML配置文件、2个Python扩展文件、...
本项目为基于Python和Java的多语言HanLP自然语言处理系统设计源码,共计包含658个文件,其中包括473个Python脚本、157个Markdown文档、13个Java类文件、8个RestructuredText文件、2个YAML配置文件、1个Git忽略文件、...
该项目是一款结合Python与Java技术的HanLP自然语言处理设计源码,包含654个文件,涵盖469个Python脚本、157个Markdown文档、13个Java类文件、8个reStructuredText文件、2个YAML文件、1个Git忽略规则文件、1个授权...
本项目为基于HanLP自然语言处理包的Elasticsearch分词器设计源码,共计26个文件,涵盖19个Java源文件、3个XML配置文件、1个Git忽略文件、1个Markdown文件和1个属性文件。该分词器旨在提高Elasticsearch的中文分词...