`

用消息队列和消息应用状态表来消除分布式事务 (转)

 
阅读更多
由于数据量的巨大,大部分Web应用都需要部署很多个数据库实例。这样,有些用户操作就可能需要去修改多个数据库实例中的数据。传统的解决方法是使用分布式事务保证数据的全局一致性,经典的方法是使用两阶段提交协议。

长期以来,分布式事务提供的优雅的全局ACID保证麻醉了应用开发者的心灵,很多人都不敢越雷池一步,想像没有分布式事务的世界会是怎样。如今就如MySQL和PostgreSQL这类面向低端用户的开源数据库都支持分布式事务了,开发者更是沉醉其中,不去考虑分布式事务是否给系统带来了伤害。

事实上,有所得必有所失,分布式事务提供的ACID保证是以损害系统的可用性、性能与可伸缩性为代价的。只有在参与分布式事务的各个数据库实例都能够正常工作的前提下,分布式事务才能够顺利完成,只要有一个工作不正常,整个事务就不能完成。这样,系统的可用性就相当于参加分布式事务的各实例的可用性之积,实例越多,可用性下降越明显。从性能和可伸缩性角度看,首先是事务的总持续时间通常是各实例操作时间之和,因为一个事务中的各个操作通常是顺序执行的,这样事务的响应时间就会增加很多;其次是一般Web应用的事务都不大,单机操作时间也就几毫秒甚至不到1毫秒,一但涉及到分布式事务,提交时节点间的网络通信往返过程也为毫秒级别,对事务响应时间的影响也不可忽视。由于事务持续时间延长,事务对相关资源的锁定时间也相应增加,从而可能严重增加了并发冲突,影响到系统吞吐率和可伸缩性。

正是由于分布式事务有以上问题,eBay在设计上就不采用分布式事务,而是通过其它途径来解决数据一致性问题。其中使用的最重要的技术就是消息队列和消息应用状态表。

举个例子。假设系统中有以下两个表
  user(id, name, amt_sold, amt_bought)
  transaction(xid, seller_id, buyer_id, amount)
其中user表记录用户交易汇总信息,transaction表记录每个交易的详细信息。

这样,在进行一笔交易时,若使用事务,就需要对数据库进行以下操作:
begin;
  INSERT INTO transaction VALUES(xid, $seller_id, $buyer_id, $amount);
  UPDATE user SET amt_sold = amt_sold + $amount WHERE id = $seller_id;
  UPDATE user SET amt_bought = amt_bought + $amount WHERE id = $buyer_id;
commit;
即在transaction表中记录交易信息,然后更新卖家和买家的状态。

假设transaction表和user表存储在不同的节点上,那么上述事务就是一个分布式事务。要消除这一分布式事务,将它拆分成两个子事务,一个更新transaction表,一个更新user表是不行的,因为有可能transaction表更新成功后,更新user失败,系统将不能恢复到一致状态。

解决方案是使用消息队列。如下所示,先启动一个事务,更新transaction表后,并不直接去更新user表,而是将要对user表进行的更新插入到消息队列中。另外有一个异步任务轮询队列内容进行处理。
begin;
  INSERT INTO transaction VALUES(xid, $seller_id, $buyer_id, $amount);
  put_to_queue "update user("seller", $seller_id, amount);
  put_to_queue "update user("buyer", $buyer_id, amount);
commit;
for each message in queue
  begin;
    dequeue message;
    if message.type = "seller" then
      UPDATE user SET amt_sold = amt_sold + message.amount WHERE id = message.user_id;
    else
      UPDATE user SET amt_bought = amt_bought + message.amount WHERE id = message.user_id;
    end
  commit;
end

上述解决方案看似完美,实际上还没有解决分布式问题。为了使第一个事务不涉及分布式操作,消息队列必须与transaction表使用同一套存储资源,但为了使第二个事务是本地的,消息队列存储又必须与user表在一起。这两者是不可能同时满足的。

如果消息具有操作幂等性,也就是一个消息被应用多次与应用一次产生的效果是一样的话,上述问题是很好解决的,只要将消息队列放到transaction表一起,然后在第二个事务中,先应用消息,再从消息队列中删除。由于消息队列存储与user表不在一起,应用消息后,可能还没来得及将应用过的消息从队列中删除时系统就出故障了。这时系统恢复后会重新应用一次这一消息,由于幂等性,应用多次也能产生正确的结果。

但实际情况下,消息很难具有幂等性,比如上述的UPDATE操作,执行一次和执行多次的结束显然是不一样的。解决这一问题的方法是使用另一个表记录已经被成功应用的消息,并且这个表使用与user表相同的存储。假设增加以下表 message_applied(msg_id)记录被成功应用的消息,则产生最终的解决方案如下:
begin;
  INSERT INTO transaction VALUES(xid, $seller_id, $buyer_id, $amount);
  put_to_queue "update user("seller", $seller_id, amount);
  put_to_queue "update user("buyer", $buyer_id, amount);
commit;
for each message in queue
  begin;
    SELECT count(*) as cnt FROM message_applied WHERE msg_id = message.id;
    if cnt = 0 then
      if message.type = "seller" then
        UPDATE user SET amt_sold = amt_sold + message.amount WHERE id = message.user_id;
      else
        UPDATE user SET amt_bought = amt_bought + message.amount WHERE id = message.user_id;
      end
      INSERT INTO message_applied VALUES(message.id);
    end
  commit;
  if 上述事务成功
    dequeue message
    DELETE FROM message_applied WHERE msg_id = message.id;
  end
end

我们来仔细分析一下:
1、消息队列与transaction使用同一实例,因此第一个事务不涉及分布式操作;
2、message_applied与user表在同一个实例中,也能保证一致性;
3、第二个事务结束后,dequeue message之前系统可能出故障,出故障后系统会重新从消息队列中取出这一消息,但通过message_applied表可以检查出来这一消息已经被应用过,跳过这一消息实现正确的行为;
4、最后将已经成功应用,且已经从消息队列中删除的消息从message_applied表中删除,可以将message_applied表保证在很小的状态(不清除也是可以的,不影响系统正确性)。由于消息队列与message_applied在不同实例上,dequeue message之后,将对应message_applied记录删除之前可能出故障。一但这时出现故障,message_applied表中会留下一些垃圾内容,但不影响系统正确性,另外这些垃圾内容也是可以正确清理的。

虽然由于没有分布式事务的强一致性保证,使用上述方案在系统发生故障时,系统将短时间内处于不一致状态。但基于消息队列和消息应用状态表,最终可以将系统恢复到一致。使用消息队列方案,解除了两个数据库实例之间的紧密耦合,其性能和可伸缩性是分布式事务不可比拟的。

当然,使用分布式事务有助于简化应用开发,使用消息队列明显需要更多的工作量,两者各有优缺点。个人观点是,对于时间紧迫或者对性能要求不高的系统,应采用分布式事务加快开发效率,对于时间需求不是很紧,对性能要求很高的系统,应考虑使用消息队列方案。对于原使用分布式事务,且系统已趋于稳定,性能要求高的系统,则可以使用消息队列方案进行重构来优化性能。

分享到:
评论

相关推荐

    基于改进YOLOv5s的森林烟火检测算法.pdf

    基于改进YOLOv5s的森林烟火检测算法.pdf

    人力资源管理工具绩效考核excel模板01.xlsx

    人力资源管理工具绩效考核excel模板01

    施工班组长绩效考核表.xls

    施工班组长绩效考核表

    57 -营业部经理绩效考核表1.xlsx

    57 -营业部经理绩效考核表1

    XX公司行政部绩效考核指标.xls

    XX公司行政部绩效考核指标

    ant-apache-xalan2-1.9.4-2.el7.x64-86.rpm.tar.gz

    1、文件内容:ant-apache-xalan2-1.9.4-2.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ant-apache-xalan2-1.9.4-2.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、安装指导:私信博主,全程指导安装

    部门绩效考核表模板(基于KPI以月度为例2).xlsx

    部门绩效考核表模板(基于KPI以月度为例2)

    11-6-质检员绩效考核表(含自动计算、等级评价及任意设置等级).xlsx

    11-6-质检员绩效考核表(含自动计算、等级评价及任意设置等级)

    2024年最新全国河流、湖泊矢量数据(数据权威)

    2024最新全国河流湖泊矢量数据 【数据介绍】 2024年中国河流湖泊数据 一份包含中国境内所有主要河流和湖泊的地理信息数据。 数据格式:Shapefile:广泛使用的GIS数据格式,方便在各类GIS软件中使用。 数据获取:访问OpenStreetMap官网,通过导出工具选择中国区域并下载所需的数据。 使用Geofabrik等第三方网站,可以下载预处理好的中国区域的OSM数据。 数据使用:GIS软件:如QGIS、ArcGIS等,用户可以在这些软件中导入OSM数据进行可视化、分析和编辑。 数据应用: 环境研究:分析河流湖泊的水质变化,研究水资源分布及其环境影响。 城市规划:用于规划城市水系、洪水防控、水资源管理等。 导航和旅游:为河流湖泊的导航和旅游路线规划提供数据支持。 科研:为水文地理研究、生态保护、气候变化等领域提供基础数据。 数据特点: 实时更新:OSM数据由全球用户贡献,具有较高的实时性和更新频率。 开放性:所有数据都在开放许可下发布,允许用户自由使用、修改和分发。 详细性:由于全球志愿者的不断努力,数据细节较为丰富,涵盖了从主要河流湖泊到小型水体的广泛范围。 数据时间2024年5月,shp格式,数据来源OpenStreetMap。 OpenStreetMap(OSM)介绍: 一个开放的、免费的、全球性的地图项目,由全球的志愿者和地图爱好者们共同创建和维护。 OSM的数据包括道路、建筑、公园、河流、湖泊等各类地理信息。由于是由众多志愿者共同编辑,OSM的数据具有很高的实时性和详细程度,特别是在一些活跃的区域,地图数据的更新速度和精度往往超过商业地图服务。 用户可以直接在OSM官网下载地图数据,数据格式主要有OSM XML和PBF等。此外,还有一些第三方网站和工具提供更加便捷的数据下载和处理服务,如Geofabrik、Overpass API等。 OSM的数据可以在各种GIS软件中使用,如QGIS、ArcGIS等。此外,还可以使用Python的OSMnx、GeoPandas等库进行编程处理,或者通过Leaflet、Mapbox等JavaScript库将OSM数据集成到web地图应用中。 OSM的所有数据都在开放许可下发布,允许用户自由使用、修改和分发。这使得OSM成为了许多公共项目、研究机构和商业公司的重要数据来源。

    部门绩效考核评分表.xlsx

    部门绩效考核评分表

    12-11-运输车队长绩效考核表(含自动计算、等级评价).xlsx

    12-11-运输车队长绩效考核表(含自动计算、等级评价)

    ant-javadoc-1.9.4-2.el7.x64-86.rpm.tar.gz

    1、文件内容:ant-javadoc-1.9.4-2.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ant-javadoc-1.9.4-2.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、安装指导:私信博主,全程指导安装

    springboot整合 freemarker方法

    springboot整合 freemarker方法

    apache-commons-codec-1.8-7.el7.x64-86.rpm.tar.gz

    1、文件内容:apache-commons-codec-1.8-7.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/apache-commons-codec-1.8-7.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、安装指导:私信博主,全程指导安装

    (数据权威)全国旅游抽样调查数据

    《旅游抽样调查资料》是反映入境游客在华(内地)花费和国内居民国内旅游情况的资料性年刊,分为上下两篇。 上篇为在华(内地)停留时间在3个月以内的入境游客抽样调查资料,由综合分析报告和调查分类数据两部分组成,分类数据包括:入境游客的主要特征,入境外国人、港澳台同胞的花费水平和花费构成、在境内的停留时间以及入境次数、流向和对住宿单位的选择等。 下篇为国内旅游抽样调查资料,汇集了对城镇居民和农村居民的国内旅游抽样调查结果,共分为四个部分:第一部分为综合分析报告;第二部分为国内旅游出游及花费情况;第三部分为城镇居民国内旅游抽样调查分类数据;第四部分为农村居民国内旅游抽样调查分类数据。

    二代身份证信息读取(vfp8.0)

    1、表单界面,身份证信息保存在dbf表中,供vfp应用使用,可导出为xls电子表格。 2、提供了身份证过期校验和查询功能。

    人事行政主管绩效考核评分表.xls

    人事行政主管绩效考核评分表

    08 -大堂副理绩效考核表1.xlsx

    08 -大堂副理绩效考核表1

    apr-1.4.8-7.el7.x64-86.rpm.tar.gz

    1、文件内容:apr-1.4.8-7.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/apr-1.4.8-7.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、安装指导:私信博主,全程指导安装

    ComponentNameError解决办法.md

    ComponentNameError解决办法.md

Global site tag (gtag.js) - Google Analytics