`
aa8945163
  • 浏览: 277371 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

JAVA是怎么进行垃圾回收的?

阅读更多
java中垃圾回收以前听老师讲好像是内存满了他才去做一次整体垃圾回收,在回收垃圾的同时会调用finalize方法.你在构造一个类时可以构造一个类时覆盖他的finalize方法以便于该类在被垃圾回收时执行一些代码,比如释放资源.

1.JVM的gc概述

  gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存。java语言并不要求jvm有gc,也没有规定gc如何工作。不过常用的jvm都有gc,而且大多数gc都使用类似的算法管理内存和执行收集操作。

  在充分理解了垃圾收集算法和执行过程后,才能有效的优化它的性能。有些垃圾收集专用于特殊的应用程序。比如,实时应用程序主要是为了避免垃圾收集中断,而大多数OLTP应用程序则注重整体效率。理解了应用程序的工作负荷和jvm支持的垃圾收集算法,便可以进行优化配置垃圾收集器。

  垃圾收集的目的在于清除不再使用的对象。gc通过确定对象是否被活动对象引用来确定是否收集该对象。gc首先要判断该对象是否是时候可以收集。两种常用的方法是引用计数和对象引用遍历。

  1.1.引用计数

  引用计数存储对特定对象的所有引用数,也就是说,当应用程序创建引用以及引用超出范围时,jvm必须适当增减引用数。当某对象的引用数为0时,便可以进行垃圾收集。

  1.2.对象引用遍历

  早期的jvm使用引用计数,现在大多数jvm采用对象引用遍历。对象引用遍历从一组对象开始,沿着整个对象图上的每条链接,递归确定可到达(reachable)的对象。如果某对象不能从这些根对象的一个(至少一个)到达,则将它作为垃圾收集。在对象遍历阶段,gc必须记住哪些对象可以到达,以便删除不可到达的对象,这称为标记(marking)对象。

  下一步,gc要删除不可到达的对象。删除时,有些gc只是简单的扫描堆栈,删除未标记的未标记的对象,并释放它们的内存以生成新的对象,这叫做清除(sweeping)。这种方法的问题在于内存会分成好多小段,而它们不足以用于新的对象,但是组合起来却很大。因此,许多gc可以重新组织内存中的对象,并进行压缩(compact),形成可利用的空间。

  为此,gc需要停止其他的活动活动。这种方法意味着所有与应用程序相关的工作停止,只有gc运行。结果,在响应期间增减了许多混杂请求。另外,更复杂的 gc不断增加或同时运行以减少或者清除应用程序的中断。有的gc使用单线程完成这项工作,有的则采用多线程以增加效率。

2.几种垃圾回收机制

  2.1.标记-清除收集器

  这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。

  2.2.标记-压缩收集器

  有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。

  2.3.复制收集器

  这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,jvm生成的新对象则放在另一半空间中。gc运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。

  2.4.增量收集器

  增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾。这会造成较小的应用程序中断。

  2.5.分代收集器

  这种收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。jvm生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。

  2.6.并发收集器

  并发收集器与应用程序同时运行。这些收集器在某点上(比如压缩时)一般都不得不停止其他操作以完成特定的任务,但是因为其他应用程序可进行其他的后台操作,所以中断其他处理的实际时间大大降低。

  2.7.并行收集器

  并行收集器使用某种传统的算法并使用多线程并行的执行它们的工作。在多cpu机器上使用多线程技术可以显著的提高java应用程序的可扩展性。



3.Sun HotSpot

  1.4.1 JVM堆大小的调整

  Sun HotSpot 1.4.1使用分代收集器,它把堆分为三个主要的域:新域、旧域以及永久域。Jvm生成的所有新对象放在新域中。一旦对象经历了一定数量的垃圾收集循环后,便获得使用期并进入旧域。在永久域中jvm则存储class和method对象。就配置而言,永久域是一个独立域并且不认为是堆的一部分。

  下面介绍如何控制这些域的大小。可使用-Xms和-Xmx 控制整个堆的原始大小或最大值。

  下面的命令是把初始大小设置为128M:

  java –Xms128m

  –Xmx256m为控制新域的大小,可使用-XX:NewRatio设置新域在堆中所占的比例。

  下面的命令把整个堆设置成128m,新域比率设置成3,即新域与旧域比例为1:3,新域为堆的1/4或32M:

java –Xms128m –Xmx128m
–XX:NewRatio =3可使用-XX:NewSize和-XX:MaxNewsize设置新域的初始值和最大值。

  下面的命令把新域的初始值和最大值设置成64m:

java –Xms256m –Xmx256m –Xmn64m

  永久域默认大小为4m。运行程序时,jvm会调整永久域的大小以满足需要。每次调整时,jvm会对堆进行一次完全的垃圾收集。

  使用-XX:MaxPerSize标志来增加永久域搭大小。在WebLogic Server应用程序加载较多类时,经常需要增加永久域的最大值。当jvm加载类时,永久域中的对象急剧增加,从而使jvm不断调整永久域大小。为了避免调整,可使用-XX:PerSize标志设置初始值。

  下面把永久域初始值设置成32m,最大值设置成64m。

java -Xms512m -Xmx512m -Xmn128m -XX:PermSize=32m -XX:MaxPermSize=64m

  默认状态下,HotSpot在新域中使用复制收集器。该域一般分为三个部分。第一部分为Eden,用于生成新的对象。另两部分称为救助空间,当Eden 充满时,收集器停止应用程序,把所有可到达对象复制到当前的from救助空间,一旦当前的from救助空间充满,收集器则把可到达对象复制到当前的to救助空间。From和to救助空间互换角色。维持活动的对象将在救助空间不断复制,直到它们获得使用期并转入旧域。使用-XX:SurvivorRatio 可控制新域子空间的大小。

  同NewRation一样,SurvivorRation规定某救助域与Eden空间的比值。比如,以下命令把新域设置成64m,Eden占32m,每个救助域各占16m:

java -Xms256m -Xmx256m -Xmn64m -XX:SurvivorRation =2

  如前所述,默认状态下HotSpot对新域使用复制收集器,对旧域使用标记-清除-压缩收集器。在新域中使用复制收集器有很多意义,因为应用程序生成的大部分对象是短寿命的。理想状态下,所有过渡对象在移出Eden空间时将被收集。如果能够这样的话,并且移出Eden空间的对象是长寿命的,那么理论上可以立即把它们移进旧域,避免在救助空间反复复制。但是,应用程序不能适合这种理想状态,因为它们有一小部分中长寿命的对象。最好是保持这些中长寿命的对象并放在新域中,因为复制小部分的对象总比压缩旧域廉价。为控制新域中对象的复制,可用-XX:TargetSurvivorRatio控制救助空间的比例(该值是设置救助空间的使用比例。如救助空间位1M,该值50表示可用500K)。该值是一个百分比,默认值是50。当较大的堆栈使用较低的 sruvivorratio时,应增加该值到80至90,以更好利用救助空间。用-XX:maxtenuring threshold可控制上限。

  为放置所有的复制全部发生以及希望对象从eden扩展到旧域,可以把MaxTenuring Threshold设置成0。设置完成后,实际上就不再使用救助空间了,因此应把SurvivorRatio设成最大值以最大化Eden空间,设置如下:

java … -XX:MaxTenuringThreshold=0 –XX:SurvivorRatio=50000 …

4.BEA JRockit JVM的使用

  Bea WebLogic 8.1使用的新的JVM用于Intel平台。在Bea安装完毕的目录下可以看到有一个类似于jrockit81sp1_141_03的文件夹。这就是 Bea新JVM所在目录。不同于HotSpot把Java字节码编译成本地码,它预先编译成类。JRockit还提供了更细致的功能用以观察JVM的运行状态,主要是独立的GUI控制台(只能适用于使用Jrockit才能使用jrockit81sp1_141_03自带的console监控一些cpu及 memory参数)或者WebLogic Server控制台。

  Bea JRockit JVM支持4种垃圾收集器:

  4.1.1.分代复制收集器

  它与默认的分代收集器工作策略类似。对象在新域中分配,即JRockit文档中的nursery。这种收集器最适合单cpu机上小型堆操作。

  4.1.2.单空间并发收集器

  该收集器使用完整堆,并与背景线程共同工作。尽管这种收集器可以消除中断,但是收集器需花费较长的时间寻找死对象,而且处理应用程序时收集器经常运行。如果处理器不能应付应用程序产生的垃圾,它会中断应用程序并关闭收集。

  分代并发收集器这种收集器在护理域使用排它复制收集器,在旧域中则使用并发收集器。由于它比单空间共同发生收集器中断频繁,因此它需要较少的内存,应用程序的运行效率也较高,注意,过小的护理域可以导致大量的临时对象被扩展到旧域中。这会造成收集器超负荷运作,甚至采用排它性工作方式完成收集。

  4.1.3.并行收集器

  该收集器也停止其他进程的工作,但使用多线程以加速收集进程。尽管它比其他的收集器易于引起长时间的中断,但一般能更好的利用内存,程序效率也较高。

  默认状态下,JRockit使用分代并发收集器。要改变收集器,可使用-Xgc:,对应四个收集器分别为 gencopy,singlecon,gencon以及parallel。可使用-Xms和-Xmx设置堆的初始大小和最大值。要设置护理域,则使用- Xns:java –jrockit –Xms512m –Xmx512m –Xgc:gencon –Xns128m…尽管JRockit支持-verbose:gc开关,但它输出的信息会因收集器的不同而异。JRockit还支持memory、 load和codegen的输出。

  注意 :如果 使用JRockit JVM的话还可以使用WLS自带的console(C:\bea\jrockit81sp1_141_03\bin下)来监控一些数据,如cpu, memery等。要想能构监控必须在启动服务时startWeblogic.cmd中加入-Xmanagement参数。



5.如何从JVM中获取信息来进行调整

  -verbose.gc开关可显示gc的操作内容。打开它,可以显示最忙和最空闲收集行为发生的时间、收集前后的内存大小、收集需要的时间等。打开- xx:+ printgcdetails开关,可以详细了解gc中的变化。打开-XX: + PrintGCTimeStamps开关,可以了解这些垃圾收集发生的时间,自jvm启动以后以秒计量。最后,通过-xx: + PrintHeapAtGC开关了解堆的更详细的信息。为了了解新域的情况,可以通过-XX:=PrintTenuringDistribution开关了解获得使用期的对象权。

6.Pdm系统JVM调整

  6.1.服务器:前提内存1G 单CPU

  可通过如下参数进行调整:-server 启用服务器模式(如果CPU多,服务器机建议使用此项)

  -Xms,-Xmx一般设为同样大小。 800m

  -Xmn 是将NewSize与MaxNewSize设为一致。320m

  -XX:PerSize 64m

  -XX:NewSize 320m 此值设大可调大新对象区,减少Full GC次数

  -XX:MaxNewSize 320m

  -XX:NewRato NewSize设了可不设。

  -XX: SurvivorRatio

  -XX:userParNewGC 可用来设置并行收集

  -XX:ParallelGCThreads 可用来增加并行度

  -XXUseParallelGC 设置后可以使用并行清除收集器

  -XX:UseAdaptiveSizePolicy 与上面一个联合使用效果更好,利用它可以自动优化新域大小以及救助空间比值

  6.2.客户机:通过在JNLP文件中设置参数来调整客户端JVM

  JNLP中参数:initial-heap-size和max-heap-size

  这可以在framework的RequestManager中生成JNLP文件时加入上述参数,但是这些值是要求根据客户机的硬件状态变化的(如客户机的内存大小等)。建议这两个参数值设为客户机可用内存的60%(有待测试)。为了在动态生成JNLP时以上两个参数值能够随客户机不同而不同,可靠虑获得客户机系统信息并将这些嵌到首页index.jsp中作为连接请求的参数。

  在设置了上述参数后可以通过Visualgc 来观察垃圾回收的一些参数状态,再做相应的调整来改善性能。一般的标准是减少fullgc的次数,最好硬件支持使用并行垃圾回收(要求多CPU)。
分享到:
评论

相关推荐

    利用Simulink实现混合储能系统在直流微网中的下垂控制策略研究:保持直流母线电压稳定的实践与探究,Simulink仿真下的光储直流微网混合储能系统下垂控制策略优化研究(注意版本要求为2021A以上

    利用Simulink实现混合储能系统在直流微网中的下垂控制策略研究:保持直流母线电压稳定的实践与探究,Simulink仿真下的光储直流微网混合储能系统下垂控制策略优化研究(注意版本要求为2021A以上),混合储能系统 光储微网 下垂控制 Simulink仿真 注意版本2021A以上 由光伏发电系统和混合储能系统构成直流微网。 混合储能系统由超级电容器和蓄电池构成,通过控制混合储能系统来维持直流母线电压稳定。 混合储能系统采用下垂控制来实现超级电容和蓄电池的功率分配,蓄电池响应低频量,超级电容响应高频量。 通过改变光照来影响光伏出力,控制混合储能系统保持微网直流母线电压稳定在380V,不受光伏出力变化影响。 ,混合储能系统; 光储微网; 下垂控制; Simulink仿真; 版本2021A; 直流母线电压稳定; 光伏出力变化; 超级电容器; 蓄电池。,2021A+混合储能系统:光储微网下垂控制Simulink仿真研究

    JavaScript入门到精通: 全栈编程语言的基础与进阶学习指南

    内容概要:本文档是针对JavaScript这一跨平台解释型语言的详尽入门手册,首先概述了JavaScript的概念及其重要特性,强调它不仅适用于前端同时也活跃于Node.js的服务器环境之中,从而成为全栈开发的重要技能。紧接着文档阐述了JavaScript的基本语法元素如变量声明、数据类型、运算符及控制结构,让新手理解JavaScript的语法规则,并通过函数与对象操作加深印象。之后介绍了一些常见的实用工具和高级用法,例如模板字符串、解构赋值以及异步编程手段(比如Promise)。对于想要深入探索的应用场景给出了广泛的指引,无论是传统的web开发还是新兴领域的IoT或自动化脚本编写皆有所涉猎。 适合人群:对于那些没有编程背景或有其他编程经验但仍希望了解并擅长运用JavaScript的个人来说非常适合。 使用场景及目标:目的是向初学者提供足够的理论指导和技术实践机会,使他们能够在不同平台上利用JavaScript创造出有意义的作品;不论是想要从事专业软件开发或是业余项目爱好者都能够从中受益。 其他说明:文档还提供了大量权威且有用的外部链接供进一步深造学习,包括但不限于主流的在线课程、权威的技术参考资料及充满活力的支持社区。

    2D3D 中弗里德里希常数和庞加莱常数的计算 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均

    级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,不平衡电网下的svg无功补偿,级联H桥svg无功补偿statcom,采用三层控制策略。 (1)第一层采用电压电流双闭环pi控制,电压电流正负序分离,电压外环通过产生基波正序有功电流三相所有H桥模块直流侧平均电压恒定,电流内环采用前馈解耦控制; (2)第二层相间电压均衡控制,注入零序电压,控制通过注入零序电压维持相间电压平衡; (3)第三层相内电压均衡控制,使其所有子模块吸收的有功功率与其损耗补,从而保证所有H桥子模块直流侧电压值等于给定值。 有参考资料。 639,核心关键词: 1. 不平衡电网下的SVG无功补偿 2. 级联H桥SVG无功补偿STATCOM 3. 三层控制策略 4. 电压电流双闭环PI控制 5. 电压电流正负序分离 6. 直流侧平均电压恒定 7. 前馈解耦控制 8. 相间电压均衡控制 9. 零序电压注入 10. 相内电压均衡控制 以上十个关键词用分号分隔的格式为:不

    基于时空RBF-NN的混沌时间序列预测 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    基于主从博弈的动态定价策略与电动汽车充电管理优化在智能小区的实践(MATLAB+CPLEX gurobi实现),基于主从博弈理论的智能小区电动汽车充电与代理商动态定价策略优化研究,MATLAB代码:基

    基于主从博弈的动态定价策略与电动汽车充电管理优化在智能小区的实践(MATLAB+CPLEX gurobi实现),基于主从博弈理论的智能小区电动汽车充电与代理商动态定价策略优化研究,MATLAB代码:基于主从博弈的智能小区代理商定价策略及电动汽车充电管理 关键词:电动汽车 主从博弈 动态定价 智能小区 充放电优化 参考文档:《基于主从博弈的智能小区代理商定价策略及电动汽车充电管理》基本复现 仿真平台:MATLAB+CPLEX gurobi平台 主要内容:代码主要做的是一个电动汽车充电管理和智能小区代理商动态定价的问题,将代理商和车主各自追求利益最大化建模为主从博弈,上层以代理商的充电电价作为优化变量,下层以电动汽车的充电策略作为优化变量,通过优化得出最优电价策略以及动态充电策略。 ,电动汽车; 主从博弈; 动态定价; 智能小区; 充放电优化; MATLAB; CPLEX; gurobi平台。,基于主从博弈的电动汽车充电管理与定价策略优化MATLAB代码实现

    (程序、GUI、思路)MATLAB打印纸缺陷检测GUI设计.zip

    基于Matlab语言实现的设计项目 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计中的部分功能,作为“参考资料”使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。

    《基于 Transformer 的恶意软件检测器》(毕业设计,源码,教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持

    Labiew噪音与振动检测模块源码揭秘:傅里叶变换与倍频程技术应用于实际项目,LabVIEW平台噪声与振动检测模块源码解析:基于傅里叶变换与倍频程原理的实用功能模块,已成功应用于实际项目,虚拟产品退换

    Labiew噪音与振动检测模块源码揭秘:傅里叶变换与倍频程技术应用于实际项目,LabVIEW平台噪声与振动检测模块源码解析:基于傅里叶变换与倍频程原理的实用功能模块,已成功应用于实际项目,虚拟产品退换政策严谨执行,Labiew噪音与振动检测模块源码,改功能模块已运用到实际项目,原理是利用傅里叶变和倍频程实现的,产品一旦发概不 。 需要的可以联系哟 ,Labiew源码; 噪音与振动检测模块; 傅里叶变换; 倍频程; 实际项目运用,Labiew傅里叶变换倍频程噪音振动检测模块源码

    基于Comsol多物理场仿真的光伏集热器异形体建模技术研究,探索comsol多物理场仿真技术:光伏集热器异形体建模应用,comsol多物理场仿真,光伏集热器,异形体建模 ,comsol多物理场仿真;

    基于Comsol多物理场仿真的光伏集热器异形体建模技术研究,探索comsol多物理场仿真技术:光伏集热器异形体建模应用,comsol多物理场仿真,光伏集热器,异形体建模 ,comsol多物理场仿真; 光伏集热器仿真; 异形体建模,Comsol多物理场仿真在光伏集热器及异形体建模中的应用

    器官3D分割-基于WinForm框架开发的医学影像系统源码+sln+演示视频(毕设基于c#和python开发).zip

    器官3D分割-基于WinForm框架开发的医学影像系统源码+sln+演示视频(毕设基于c#和python开发).zip 【项目简单介绍】 主要功能 肺炎诊断 器官 3D 分割 该系统具备肺炎诊断和器官 3D 分割的功能,并模仿了罗万科技的系统界面风格。 python和c#开发实现

    界面GUI设计MATLAB BP的水果识别.zip

    MATLAB可以用于开发水果识别系统。这种系统通常利用机器学习和图像处理技术,对输入的水果图像进行特征提取和分类识别。以下是开发水果识别系统的一般步骤: 1. 数据收集:收集包含各种水果类别的图像数据集。 2. 数据预处理:对图像进行预处理,包括裁剪、缩放、灰度化等操作。 3. 特征提取:从每个水果图像中提取特征,例如颜色直方图、纹理特征、形状特征等。 4. 数据标记:为每个图像标记水果类别,形成训练集和测试集。 5. 模型训练:使用机器学习算法(如支持向量机、卷积神经网络等)对训练集进行训练,建立水果识别模型。 6. 模型测试:使用测试集对模型进行测试和评估,调整模型超参数以提高准确率。 7. 系统集成:将训练好的模型集成到MATLAB应用程序中,实现水果识别功能。 8. 用户界面设计:设计用户友好的界面,以便用户上传水果图像并查看识别结果。 MATLAB提供了丰富的图像处理工具箱和机器学习工具箱,可以帮助开发者快速构建水果识别系统。通过结合这些工具箱,可以实现水果的快速、准确识别。

    COMSOL声子晶体仿真研究:一维至三维能带与带隙分析及色散曲线弹性波声波分析,声子晶体仿真:COMSOL代做能带图、带隙图及弹性波、声波分析与优化设计,COMSOL代做 声子晶体仿真,一维,二维,三

    COMSOL声子晶体仿真研究:一维至三维能带与带隙分析及色散曲线弹性波声波分析,声子晶体仿真:COMSOL代做能带图、带隙图及弹性波、声波分析与优化设计,COMSOL代做 声子晶体仿真,一维,二维,三维能带图,带隙图,色散曲线,弹性波,声波。 ,COMSOL代做;声子晶体仿真;一维/二维/三维能带图;带隙图;色散曲线;弹性波仿真;声波分析,COMSOL声子晶体仿真专家:一至三维声波模拟及能带图绘制

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用

    陪读租房系统(源码+数据库+论文+ppt)java开发springboot框架javaweb,可做计算机毕业设计或课程设计

    陪读租房系统(源码+数据库+论文+ppt)java开发springboot框架javaweb,可做计算机毕业设计或课程设计 【功能需求】 本系统有三个角色:管理员、租客和房主,要求具备以下功能: (a) 管理员;管理员使用本系统涉到的功能主要有:首页、个人中心、租客管理、房主管理、房源信息管理、房源类型管理、教育书籍管理、文章分类管理、租房信息管理、合同信息管理、在线咨询管理、咨阅回复管理、教育论坛、系统管理等功能。 (b) 租客;进入前台系统可以实现首页、房源信息、教育书籍、教育论坛、公告信息、后台管理等功能进行操作。 (C) 房主;进入系统可以实现首页、个人中心、房源信息管理、租房信息管理、合同信息管理、在线咨询管理、咨询回复管理等功能进行操作。 【环境需要】 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.数据库:MySql 5.7/8.0等版本均可; 【购买须知】 本源码项目经过严格的调试,项目已确保无误,可直接用于课程实训或毕业设计提交。里面都有配套的运行环境软件,讲解视频,部署视频教程,一应俱全,可以自己按照教程导入运行。附有论文参考,使学习者能够快速掌握系统设计和实现的核心技术。

    vue3的一些语法以及知识点

    vue3的一些语法以及知识点

    libicu-doc-50.2-4.el7-7.x64-86.rpm.tar.gz

    1、文件内容:libicu-doc-50.2-4.el7_7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/libicu-doc-50.2-4.el7_7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    水果销售商城(源码+数据库+论文+ppt)java开发springboot框架javaweb,可做计算机毕业设计或课程设计

    水果销售商城(源码+数据库+论文+ppt)java开发springboot框架javaweb,可做计算机毕业设计或课程设计 【功能需求】 水果购物网站用户可以注册登录,在首页开通会员卡,查看水果,购买水果,查看水果信息,以及个人中心修改个人资料,在自己的后台查看自己的购买记录等。 水果购物网站管理员功能:个人中心管理,用户管理,会员管理,会员卡管理,开通会员记录管理,积分管理,水果管理,购买水果订单管理,积分兑换管理,积分兑换记录管理,加积分记录管理,减积分记录管理。 【环境需要】 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.数据库:MySql 5.7/8.0等版本均可; 【购买须知】 本源码项目经过严格的调试,项目已确保无误,可直接用于课程实训或毕业设计提交。里面都有配套的运行环境软件,讲解视频,部署视频教程,一应俱全,可以自己按照教程导入运行。附有论文参考,使学习者能够快速掌握系统设计和实现的核心技术。

    基于Matlab的双输入深度学习模型构建指南:处理序列与图像数据的创新性应用,Matlab双输入深度学习模型搭建指南:如何处理两种输入数据并实现创新与优势,Matlab搭建双输入深度学习模型,双输入网

    基于Matlab的双输入深度学习模型构建指南:处理序列与图像数据的创新性应用,Matlab双输入深度学习模型搭建指南:如何处理两种输入数据并实现创新与优势,Matlab搭建双输入深度学习模型,双输入网络。 相比普通的单输入网络,双输入网络能处理两种输入数据,在科研上也更具有优势和创新性。 如何用Matlab搭建双输入网络也是困扰本人很长时间的一个问题,现已弄明白。 注意,需要Matlab 2022b及以上版本,以下版本估计是都不行。 本程序是两个输入全为一维序列的情况(第二个输入序列是第一个输入序列的特征值,或者变后的序列)。 也可改为两边输入都是图像,或者一边输入图像,一边输入图像的一维特征序列。 本程序工作如下: 1、加载数据,两种输入数据一一对应,第二个数据是第一个数据做FFT之后的序列,属于一个类别。 两种数据样本数相等,序列长度不相等。 2、搭建双输入网络,此网络一边是CNN-LSTM,一边是CNN。 3、训练。 4、测试,输出准确率。 注:程序可直接运行,包教会和调通。 可以有偿修改为两边输入都是图像,或一边输入图像一边输入序列的模型。 可有偿替数据,调通程序。 程序注释详

    十大管理的49个过程组强化记忆

    包含十大管理49个过程组的输入与输出和解释,还有EVA铮值管理的公式汇总和解释

Global site tag (gtag.js) - Google Analytics