在网上看了一篇外文文章,里面介绍了提高Lucene索引速度的技巧,分享给大家。
先来看下影响索引的主要因素:
MaxMergeDocs
该参数决定写入内存索引文档个数,到达该数目后就把该内存索引写入硬盘,生成一个新的索引segment文件。
所以该参数也就是一个内存buffer,一般来说越大索引速度越快。
MaxBufferedDocs这个参数默认是disabled的,因为Lucene中还用另外一个参数(RAMBufferSizeMB)控制这个bufffer的索引文档个数。
其实MaxBufferedDocs和RAMBufferSizeMB这两个参数是可以一起使用的,一起使用时只要有一个触发条件满足就写入硬盘,生成一个新的索引segment文件。
RAMBufferSizeMB
控制用于buffer索引文档的内存上限,如果buffer的索引文档个数到达该上限就写入硬盘。当然,一般来说也只越大索引速度越快。
当我们对文档大小不太确定时,这个参数就相当有用,不至于outofmemory error.
MergeFactor
这个参数是用于子索引(Segment)合并的。
Lucene中索引总体上是这样进行,索引现写到内存,触发一定限制条件后写入硬盘,生成一个独立的子索引-lucene中叫Segment。一般来说这些子索引需要合并成一个索引,也就是optimize(),否则会影响检索速度,而且也可能导致open too many files。
MergeFactor 这个参数就是控制当硬盘中有多少个子索引segments,我们就需要现把这些索引合并冲一个稍微大些的索引了。
MergeFactor这个不能设置太大,特别是当MaxBufferedDocs比较小时(segment 越多),否则会导致open too many files错误,甚至导致虚拟机外面出错。
Note: Lucene 中默认索引合并机制并不是两两合并,好像是多个segment 合并成最终的一个大索引,所以MergeFactor越大耗费内存越多,索引速度也会快些,但我的感觉太大譬如300,最后合并的时候还是很满。Batch indexing 应 MergeFactor>10
加快索引的一些技巧:
• 确认你在使用最新的Lucene版本。
• 尽量使用本地文件系统
远程文件系统一般来说都会降低索引速度。如果索引必须分布在远程服务器,请尝试先在本地生成索引,然后分发到远程服务器上。
• 使用更快的硬件设备,特别是更快的IO设备
• 在索引期间复用单一的IndexWriter实例
• 使用按照内存消耗Flush代替根据文档数量Flush
在Lucene 2.2之前的版本,可以在每次添加文档后调用ramSizeInBytes方法,当索引消耗过多的内存时,然后在调用flush()方法。这样做在索引大量小文档或者文档大小不定的情况下尤为有效。你必须先把maxBufferedDocs参数设置足够大,以防止writer基于文档数量flush。但是注意,别把这个值设置的太大,否则你将遭遇Lucene-845号BUG。不过这个BUG已经在2.3版本中得到解决。
在Lucene2.3之后的版本。IndexWriter可以自动的根据内存消耗调用flush()。你可以通过writer.setRAMBufferSizeMB()来设置缓存大小。当你打算按照内存大小flush后,确保没有在别的地方设置MaxBufferedDocs值。否则flush条件将变的不确定(谁先符合条件就按照谁)。
• 在你能承受的范围内使用更多的内存
在flush前使用更多的内存意味着Lucene将在索引时生成更大的segment,也意味着合并次数也随之减少。在Lucene-843中测试,大概48MB内存可能是一个比较合适的值。但是,你的程序可能会是另外一个值。这跟不同的机器也有一定的关系,请自己多加测试,选择一个权衡值。
• 关闭复合文件格式
调用setUseCompoundFile(false)可以关闭复合文件选项。生成复合文件将消耗更多的时间(经过Lucene-888测试,大概会增加7%-33%的时间)。但是请注意,这样做将大大的增加搜索和索引使用的文件句柄的数量。如果合并因子也很大的话,你可能会出现用光文件句柄的情况。
• 重用Document和Field实例
在lucene 2.3中,新增了一个叫setValue的方法,可以允许你改变字段的值。这样的好处是你可以在整个索引进程中复用一个Filed实例。这将极大的减少GC负担。
最好创建一个单一的Document实例,然后添加你想要的字段到文档中。同时复用添加到文档的Field实例,通用调用相应的SetValue方法改变相应的字段的值。然后重新将Document添加到索引中。
注意:你不能在一个文档中多个字段共用一个Field实例,在文档添加到索引之前,Field的值都不应该改变。也就是说如果你有3个字段,你必须创建3个Field实例,然后再之后的Document添加过程中复用它们。
• 在你的分析器Analyzer中使用一个单一的Token实例
在分析器中共享一个单一的token实例也将缓解GC的压力。
• 在Token中使用char[]接口来代替String接口来表示数据
在Lucene 2.3中,Token可以使用char数组来表示他的数据。这样可以避免构建字符串以及GC回收字符串的消耗。通过配合使用单一Token实例和使用char[]接口你可以避免创建新的对象。
• 设置autoCommit为false
在Lucene 2.3中对拥有存储字段和Term向量的文档进行了大量的优化,以节省大索引合并的时间。你可以将单一复用的IndexWriter实例的autoCommit设置为false来见证这些优化带来的好处。注意这样做将导致searcher在IndexWriter关闭之前不会看到任何索引的更新。如果你认为这个对你很重要,你可以继续将autoCommit设置为true,或者周期性的打开和关闭你的writer。
• 如果你要索引很多小文本字段,如果没有特别需求,建议你将这些小文本字段合并为一个大的contents字段,然后只索引contents。(当然你也可以继续存储那些字段)
• 加大mergeFactor合并因子,但不是越大越好
大的合并因子将延迟segment的合并时间,这样做可以提高索引速度,因为合并是索引很耗时的一个部分。但是,这样做将降低你的搜索速度。同时,你有可能会用光你的文件句柄如果你把合并因子设置的太大。值太大了设置可能降低索引速度,因为这意味着将同时合并更多的segment,将大大的增加硬盘的负担。
• 关闭所有你实际上没有使用的功能
如果你存储了字段,但是在查询时根本没有用到它们,那么别存储它们。同样Term向量也是如此。如果你索引很多的字段,关闭这些字段的不必要的特性将对索引速度提升产生很大的帮助。
• 使用一个更快的分析器
有时间分析文档将消耗很长的时间。举例来说,StandardAnalyzer就比较耗时,尤其在Lucene 2.3版本之前。你可以尝试使用一个更简单更快但是符合你需求的分析器。
• 加速文档的构建时间
在通常的情况下,文档的数据来源可能是外部(比如数据库,文件系统,蜘蛛从网站上的抓取等),这些通常都比较耗时,尽量优化获取它们的性能。
• 在你真的需要之前不要随意的优化optimize索引(只有在需要更快的搜索速度的时候)
• 在多线程中共享一个IndexWriter
最新的硬件都是适合高并发的(多核CPU,多通道内存构架等),所以使用多线程添加文档将会带来不小的性能提升。就算是一台很老的机器,并发添加文档都将更好的利用IO和CPU。多测试并发的线程数目,获得一个临界最优值。
• 将文档分组在不同的机器上索引然后再合并
如果你有大量的文本文档需要索引,你可以把你的文档分为若干组,在若干台机器上分别索引不同的组,然后利用writer.addIndexesNoOptimize来将它们合并到最终的一个索引文件中。
• 运行性能测试程序
如果以上的建议都没有发生效果。建议你运行下性能检测程序。找出你的程序中哪个部分比较耗时。这通常会给你想不到的惊喜。
本翻译属于原创,转载时请注明出处,英文原版请查看:
http://wiki.apache.org/jakarta-lucene/ImproveIndexingSpeed
分享到:
相关推荐
**Lucene索引器实例详解** Lucene是一个高性能、全文本搜索库,由Apache软件基金会开发,被广泛应用于各种搜索引擎的构建。它提供了一个高级的、灵活的、可扩展的接口,使得开发者能够轻松地在应用程序中实现全文...
本文将围绕“lucene索引查看程序及代码”这一主题,详细探讨其工作原理、主要功能以及使用方法。 首先,我们要了解什么是Lucene索引。Lucene的索引是一种倒排索引,它通过分析文档内容,将每个单词映射到包含该单词...
通过阅读和学习 Luke 的源码,我们可以了解到如何与 Lucene 索引进行交互,以及索引结构是如何组织和存储的。 在提供的压缩包 "luke-3.3.0" 中,包含了 Luke 工具的旧版本。这个版本可能不支持最新的 Lucene 版本,...
在 Lucene 的使用过程中,创建索引是关键步骤,而有时我们需要查看这些索引来了解其结构、内容以及优化搜索性能。这就是"Lucene 索引 查看 工具"的用途,它可以帮助我们分析和理解 Lucene 索引的工作原理。 主要...
以下是对Lucene索引机制的详细解析: 一、Lucene的索引过程 1. 文档分析:当向Lucene添加文档时,首先会经过一个分词器(Tokenizer),将文本拆分成一系列的词项(Token)。接着,这些词项会被过滤(Filter)和...
**Lucene索引和查询** Lucene是Apache软件基金会的开放源码全文搜索引擎库,它提供了文本检索的核心工具,使得开发者能够快速构建自己的搜索应用。本项目中的代码旨在展示如何利用Lucene对多个文件夹下的数据进行...
以上就是关于“Lucene索引的简单使用”的详细介绍,包括其核心概念、创建和查询索引的步骤以及一些高级特性。希望对你理解和应用Lucene有所帮助。在实际开发中,可以根据需求选择合适的Analyzer,优化索引策略,以...
lukeall-0.9.jar为Lucene索引查看工具,方便大家查看索引
**Lucene索引结构原理** Lucene是Apache软件基金会的开放源代码全文搜索引擎库,它为Java开发人员提供了强大的文本搜索功能。理解Lucene的索引结构原理对于优化搜索性能和设计高效的搜索应用至关重要。 首先,我们...
`Luck`,全称`Luke`,是一款强大的Lucene索引浏览器和分析器工具,可以帮助开发者、数据分析师以及对Lucene感兴趣的人员查看、理解和调试Lucene索引。 `Luke 7.4.0`是这款工具的一个特定版本,它专门设计用来与...
《深入理解Lucene索引文件查看工具LukeAll 4.7.1》 在信息检索领域,Lucene作为一款强大的全文搜索引擎库,被广泛应用在各种数据检索系统中。然而,对于开发者来说,理解并调试Lucene创建的索引文件并非易事。此时...
《深入理解Luke:洞察Lucene索引...通过分析Luke的源码,我们可以学习到如何操作和调试Lucene索引,这对于优化搜索算法、提高检索效率具有重大意义。同时,这也为自定义Lucene插件或者开发类似工具提供了基础和灵感。
本文将深入探讨Lucene索引的基本操作,包括如何添加文档到索引、更新已有的索引以及相关的测试代码。 ### 1. 初始化Lucene环境 首先,我们需要导入Lucene的相关库。在Java项目中,可以通过Maven或Gradle等构建工具...
这款已经老了,2.4以后的lucene索引用不了。我上传了最新版本的,有需要的话!请到http://download.csdn.net/source/1423241 下。一款可以查看Lucene分词后在索引的排名以及是否有无该词,很多时候用于查看有无需要...
一个Lucene索引是由多个文件组成的,包括但不限于 segments文件、.del文件(删除文档标记)、.tii和.tis文件(Term Info Index和Term Info postings)、.frx、.fdx、.fdt、.fdt(Field Data)等。这些文件共同构成了...
《Lucene索引小示例解析》 Lucene是一个高性能、全文检索库,它由Apache软件基金会开发并维护。在Java编程环境中,Lucene被广泛应用于构建搜索功能,特别是对于大量文本数据的高效检索。本篇文章将通过一个简单的小...
**Lucene索引搜索简介** Lucene是Apache软件基金会下的一个开源全文搜索引擎库,它提供了高性能、可扩展的文本搜索功能。Lucene并不是一个完整的搜索引擎,而是一个工具集,允许开发人员在自己的应用程序中实现搜索...
**基于Lucene技术的增量索引** 在信息技术领域,全文搜索引擎是处理大量数据查询的关键工具。Apache Lucene是一个开源的全文检索库,被广泛应用于构建高效、可扩展的搜索功能。本文将深入探讨如何利用Lucene实现...
通过对“lucene_multiThreadIndex”压缩包的学习,你将掌握如何在Lucene中实现多线程索引,从而提高大型数据集的索引构建速度。通过实践,你可以更好地理解和应用这些技术,优化你的信息检索系统。
而在Lucene中,基本单位是Document,它同样由多个字段组成,但Lucene索引的是这些字段的内容,以加速文本检索。 - **索引构建**:Lucene支持增量索引和批量索引,可以处理数据源的小幅变化或大规模数据。数据库通常...