`
JEmql
  • 浏览: 62365 次
  • 性别: Icon_minigender_1
  • 来自: 无锡
社区版块
存档分类
最新评论

硬盘空间管理原理(转)

阅读更多

我们知道硬盘中是由一片片的磁盘组成的,大家可能没有打开过硬盘,没见过它具体是什么样.不过这不要紧.我们只要理解了什么是磁道,扇区和柱面就够了.

在下图中,我们可以看到一圈圈被分成18(假设)等分的同心圆,这些同心圆就是磁道(见图).不过真打开硬盘你可看不到.它实际上是被磁头磁化的同心圆.如图可以说是被放大了的磁盘片.那么扇区就是每一个磁道中被分成若干等分的区域.相邻磁道是有间隔的,这是因为磁化单元太近会产生干扰.一个小软盘有80个磁道,硬盘嘛要远远大于此值,有成千上万的磁道.每个柱面包括512个字节。






那么什么是柱面呢?看下图,我们假设它只有3片.每一片中的磁道数是相等的.从外圈开始,磁道被分成0磁道,1磁道,2磁道......具有相同磁道编号的同心圆组成柱面,那么这柱面就像一个没了底的铁桶.哈哈,这么一说,你也知道了,柱面数就是磁盘上的磁道数.每个磁面都有自己的磁头.也就是说,磁面数等于磁头数.

 


硬盘的容量=柱面数(CYLINDER)*磁头数(HEAD)*扇区数(SECTOR)*512B.这下你也可以计算硬盘的一些参数了.

什么是簇? 

文件系统是操作系统与驱动器之间的接口,当操作系统请求从硬盘里读取一个文件时,会请求相应的文件系统(FAT 16/32/NTFS)打开文件。扇区是磁盘最小的物理存储单元,但由于操作系统无法对数目众多的扇区进行寻址,所以操作系统就将相邻的扇区组合在一起,形成一个簇,然后再对簇进行管理。每个簇可以包括2、4、8、16、32或64个扇区。显然,簇是操作系统所使用的逻辑概念,而非磁盘的物理特性。 

为了更好地管理磁盘空间和更高效地从硬盘读取数据,操作系统规定一个簇中只能放置一个文件的内容,因此文件所占用的空间,只能是簇的整数倍;而如果文件实际大小小于一簇,它也要占一簇的空间。所以,一般情况下文件所占空间要略大于文件的实际大小,只有在少数情况下,即文件的实际大小恰好是簇的整数倍时,文件的实际大小才会与所占空间完全一致。

硬盘的DOS管理结构 

1.磁道,扇区,柱面和磁头数 
  硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。在DOS中每扇区是128×2的2次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些参数可以得到硬盘的容量,基计算公式为: 
存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 
要点:(1)硬盘有数个盘片,每盘片两个面,每个面一个磁头 
   (2)盘片被划分为多个扇形区域即扇区 
   (3)同一盘片不同半径的同心圆为磁道 
   (4)不同盘片相同半径构成的圆柱面即柱面 
   (5)公式: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 
   (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区 

2.簇 
  “簇”是DOS进行分配的最小单位。当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间,而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样。簇的大小可在称为磁盘参数块(BPB)中获取。簇的概念仅适用于数据区。 
本点:(1)“簇”是DOS进行分配的最小单位。 
   (2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。 
   (3)簇的概念仅适用于数据区。 

3.扇区编号定义:绝对扇区与DOS扇区 
  由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有一一对应关系,通常DOS将“柱面/磁头/扇区”这样表示法称为“绝对扇区”表示法。但DOS不能直接使用绝对扇区进行磁盘上的信息管理,而是用所谓“相对扇区”或“DOS扇区”。“相对扇区”只是一个数字,如柱面140,磁头3,扇区4对应的相对扇区号为2757。该数字与绝对扇区“柱面/磁头/扇区”具有一一对应关系。当使用相对扇区编号时,DOS是从柱面0,磁头1,扇区1开始(注:柱面0,磁头0,扇区1没有DOS扇区编号,DOS下不能访问,只能调用BIOS访问),第一个 DOS扇区编号为0,该磁道上剩余的扇区编号为1到16(设每磁道17个扇区),然后是磁头号为2,柱面为0的17个扇区,形成的DOS扇区号从17到 33。直到该柱面的所有磁头。然后再移到柱面1,磁头1,扇区1继续进行DOS扇区的编号,即按扇区号,磁头号,柱面号(磁道号)增长的顺序连续地分配 DOS扇区号。 
公式:记DH--第一个DOS扇区的磁头号 
    DC--第一个DOS扇区的柱面号 
    DS--第一个DOS扇区的扇区号 
    NS--每磁道扇区数 
    NH--磁盘总的磁头数 
   则某扇区(柱面C,磁头H,扇区S)的相对扇区号RS为: 
RS=NH×NS×(C-DC)+NS×(H-DH)+(S-DS) 
   若已知RS,DC,DH,DS,NS和NH则 
S=(RS MOD NS)+DS 
H=((RS DIV NS)MOD NH)+DH 
C=((RS DIV NS)DIV NH)+DC 
要点:(1)以柱面/磁头/扇区表示的为绝对扇区又称物理磁盘地址 
   (2)单一数字表示的为相对扇区或DOS扇区,又称逻辑扇区号 
   (3)相对扇区与绝对扇区的转换公式 

4.DOS磁盘区域的划分 
  格式化好的硬盘,整个磁盘按所记录数据的作用不同可分为主引导记录(MBR:Main Boot Record),Dos引导记录(DBR:Dos Boot Record),文件分配表(FAT:File Assign Table),根目录(BD:Boot Directory)和数据区。前5个重要信息在磁盘的外磁道上,原因是外圈周长总大于内圈周长,也即外圈存储密度要小些,可靠性高些。
要点:(1)整个硬盘可分为MBR,DBR,FAT,BD和数据区。 
   (2)MBR,DBR,FAT,和BD位于磁盘外道。 

5.MBR 
  MBR位于硬盘第一个物理扇区(绝对扇区)柱面0,磁头0,扇区1处。由于DOS是由柱面0,磁头1,扇区1开始,故MBR不属于DOS扇区,DOS不能直接访问。MBR中包含硬盘的主引导程序和硬盘分区表。分区表有4个分区记录区。记录区就是记录有关分区信息的一张表。它从主引导记录偏移地址 01BEH处连续存放,每个分区记录区占16个字节。 
分区表的格式 
分区表项的偏移 意义   占用字节数 
   00 引导指示符 1B 
   01 分区引导记录的磁头号 1B 
   02 分区引导记录的扇区和柱面号 2B 
   04 系统指示符 1B 
   05 分区结束磁头号 1B 
   06 分区结束扇区和柱面号 2B 
   08 分区前面的扇区数 4B 
   0C 分区中总的扇区数 4B 
4个分区中只能有1个活跃分区,即C盘。标志符是80H在分区表的第一个字节处。若是00H则表示非活跃分区。例如: 
80 01 01 00 0B FE 3F 81 3F 00 00 00 C3 DD 1F 00 
00 00 01 82 05 FE BF 0C 02 DE 1F 00 0E 90 61 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
要点:(1)MBR位于硬盘第一个物理扇区柱面0,磁头0,扇区1处。不属于DOS扇区, 
   (2)主引导记录分为硬盘的主引导程序和硬盘分区表。 

6.DBR 
  DBR位于柱面0,磁头1,扇区1,即逻辑扇区0。DBR分为两部分:DOS引导程序和BPB(BIOS参数块)。其中DOS引导程序完成DOS系统文件(IO.SYS,MSDOS.SYS)的定位与装载,而BPB用来描述本DOS分区的磁盘信息,BPB位于DBR偏移0BH处,共13字节。它包含逻辑格式化时使用的参数,可供DOS计算磁盘上的文件分配表,目录区和数据区的起始地址,BPB之后三个字提供物理格式化(低格)时采用的一些参数。引导程序或设备驱动程序根据这些信息将磁盘逻辑地址(DOS扇区号)转换成物理地址(绝对扇区号)。BPB格式 
序号 偏移地址 意义 
1 03H-0AH OEM号 
2 0BH-0CH 每扇区字节数 
3 0DH 每簇扇区数 
4 0EH-0FH 保留扇区数 
5 10H FAT备份数 
6 11H-12H 根目录项数 
7 13H-14H 磁盘总扇区数 
8 15H 描述介质 
9 16H-17H 每FAT扇区数 
10 18H-19H 每磁道扇区数 
11 1AH-1BH 磁头数 
12 1CH-1FH 特殊隐含扇区数 
13 20H-23H 总扇区数 
14 24H-25H 物理驱动器数 
15 26H 扩展引导签证 
16 27H-2AH 卷系列号 
17 2BH-35H 卷标号 
18 36H-3DH 文件系统号 
DOS引导记录公式: 
文件分配表≡保留扇区数 
根目录≡保留扇区数+FAT的个数×每个FAT的扇区数 
数据区≡根目录逻辑扇区号+(32×根目录中目录项数+(每扇区字节数-1))DIV每扇区字节数 
绝对扇区号≡逻辑扇区号+隐含扇区数 
扇区号≡(绝对扇区号MOD每磁道扇区数)+1 
磁头号≡(绝对扇区号DIV每磁道扇区数)MOD磁头数 
磁道号≡(绝对扇区号DIV每磁道扇区数)DIV磁头数 
要点:(1)DBR位于柱面0,磁头1,扇区1,其逻辑扇区号为0 
   (2)DBR包含DOS引导程序和BPB。 
   (3)BPB十分重要,由此可算出逻辑地址与物理地址。 

7.文件分配表 
  文件分配表是DOS文件组织结构的主要组成部分。我们知道DOS进行分配的最基本单位是簇。文件分配表是反映硬盘上所有簇的使用情况,通过查文件分配表可以得知任一簇的使用情况。DOS在给一个文件分配空间时总先扫描FAT,找到第一个可用簇,将该空间分配给文件,并将该簇的簇号填到目录的相应段内。即形成了“簇号链”。FAT就是记录文件簇号的一张表。FAT的头两个域为保留域,对FAT12来说是3个字节,FAT来说是4个字节。其中头一个字节是用来描述介质的,其余字节为FFH 。介质格式与BPB相同。 
第一个字节的8位意义: 
7 6 5 4 3 2 1 0 
└─────-┘ │ │ │┌0非双面 
置1 │ │ └┤ 
│ │ └1双面 
│ │┌0不是8扇区 
│ └┤ 
│ └1是8扇区 
│┌0不是可换的 
└┤ 
└1是可换的 
FAT结构含义 
FAT12 FAT16 意义 
000H 0000H 可用 
FF0H-FF6H FFF0H-FFF6H 保留 
FF7H FFF7H 坏 
FF8H-FFFH FFF8H-FFFFH 文件最后一个簇 
×××H ××××H 文件下一个簇 
对于FAT16,簇号×2作偏移地址,从FAT中取出一字即为FAT中的域。 
逻辑扇区号=数据区起始逻辑扇区号+(簇号-2)×每簇扇区数 
簇号=(逻辑扇区号-数据区起始逻辑扇区号)DIV每簇扇区数+2 
要点:(1)FAT反映硬盘上所有簇的使用情况,它记录了文件在硬盘中具体位置(簇)。 
   (2)文件第一个簇号(在目录表中)和FAT的该文件的簇号串起来形成文件的“簇号链”,恢复被破坏的文件就是根 
据这条链。 
   (3)由簇号可算逻辑扇区号,反之,由逻辑扇区号也可以算出簇号,公式如上。 
   (4)FAT位于DBR之后,其DOS扇区号从1开始。
8.文件目录 
  文件目录是DOS文件组织结构的又一重要组成部分。文件目录分为两类:根目录,子目录。根目录有一个,子目录可以有多个。子目录下还可以有子目录,从而形成“树状”的文件目录结构。子目录其实是一种特殊的文件,DOS为目录项分配32字节。目录项分为三类:文件,子目录(其内容是许多目录项),卷标(只能在根目录,只有一个。目录项中有文件(或子目录,或卷标)的名字,扩展名,属性,生成或最后修改日期,时间,开始簇号,及文件大小。 
目录项的格式 
字节偏移 意义 占字节数 
00H 文件名 8B 
08H 扩展名 3B 
0BH 文件属性 1B 
0CH 保留 10B 
16H 时间 2B 
18H 日期 2B 
1AH 开始簇号 2B 
1CH 文件长度 4B 
目录项文件名区域中第一个字节还有特殊的意义:00H代表未使用 
05H代表实际名为E5H 
EBH代表此文件已被删除 
目录项属性区域的这个字节各个位的意义如下: 7 6 5 4 3 2 1 0 
                      未 修 修 子 卷 系 隐 只 
                      用 改 改 目 标 统 藏 读 
                        标 标 录   属 属 属 
                        志 志     性 性 性 
注意:WINDOWS的长文件名使用了上表中所说的“保留”这片区域。 
要点:(1)文件目录是记录所有文件,子目录名,扩展名属性,建立或删除最后修改日期。文件开始簇号及文件长度的一张 
      登记表. 
   (2)DOS中DIR列出的内容训是根据文件目录表得到的。 
   (3)文件起始簇号填在文件目录中,其余簇都填在FAT中上一簇的位置上。 

9.物理驱动器与逻辑驱动器 
  物理驱动器指实际安装的驱动器。 
  逻辑驱动器是对物理驱动器格式化后产生的。 
要点:同上。 

分享到:
评论

相关推荐

    操作系统课设 磁盘空间管理模拟实验

    在本“操作系统课设 磁盘空间管理模拟实验”中,我们将深入探讨磁盘空间管理的重要概念和算法,并通过编程实现来增强理解和实践能力。 磁盘空间管理的主要目标是高效、公平地分配和回收磁盘存储空间,确保数据的...

    磁盘空间管理的模拟与实现.zip(操作系统课程设计)

    操作系统是计算机系统的核心...通过这个课程设计,学生不仅能学习到磁盘空间管理的基本原理,还能实际操练C++编程技能,掌握位图法的实现,这对于深入理解操作系统的工作机制以及后续的系统开发工作具有极大的价值。

    操作系统磁盘空间管理

    操作系统磁盘空间管理是计算机系统中的重要组成部分,它负责有效地分配和管理硬盘驱动器上的存储资源,确保数据的高效存取。在这个过程中,有两种主要的数据结构和技术被广泛使用:成组链接和索引结构。 首先,成组...

    磁盘存储空间管理采用位视图

    6. **其他应用**:位视图不仅应用于磁盘空间管理,还可以用在文件系统的目录项、权限控制、内存管理等多个领域,因为它提供了一种直观且高效的表示和操作大量状态信息的方式。 总的来说,位视图在磁盘存储空间管理...

    模拟UNIX 磁盘存储空间的管理

    为了优化这一过程,现代的UNIX系统和其衍生系统如Linux,采用了更高级的策略,如位图法来更精确地跟踪空闲块,或者使用更复杂的分配算法如B+树,以支持更大规模的磁盘空间管理。 总结起来,模拟UNIX的空闲块成组...

    Linux磁盘存储区管理原理与技巧

    本文将深入探讨Linux下的交换空间管理,这是Linux操作系统中处理内存不足情况的一种机制。 交换空间(Swap Space)是Linux系统在物理内存不足时的扩展区域,它位于硬盘上,当物理内存被占满时,系统会将不常使用的...

    空闲磁盘存储空间的管理:简单方法

    本项目旨在通过模拟实现不同的空闲磁盘空间管理方法,如空闲表法、空闲链表法、位示图法以及UNIX的成组链接法,以加深对这些原理的理解。以下将详细阐述这些方法及其实施要点。 首先,建立数据结构是基础。我们需要...

    磁盘存储空间管理(含代码)

    根据提供的文件标题、描述、标签以及部分内容,我们可以总结出该文档主要关注的是计算机科学领域中的磁盘存储空间管理技术,...通过对这些代码的学习,读者可以更好地理解操作系统中磁盘空间管理的基本原理和技术实现。

    用位示图管理磁盘空间的分配与回收

    本课程设计旨在介绍位示图的概念、工作原理以及如何运用位示图进行磁盘空间的分配与回收。下面将详细阐述位示图的基本知识,并探讨其在实际操作系统的应用。 位示图,顾名思义,是一种用二进制位来表示磁盘空间状态...

    block_allocating.rar_磁盘空间管理

    在计算机系统中,磁盘空间管理是至关重要的一个环节,它负责有效地分配、回收和组织磁盘上的存储空间。在本项目"block_allocating.rar"中,开发者通过VC++编程语言模拟了两种常见的磁盘空间分配算法:最先合适空间...

    磁盘空间监测程序,对磁盘空间利用情况做监控

    首先,磁盘空间监测的原理基于操作系统提供的文件系统API,这些API允许程序读取磁盘分区的信息,包括总容量、已使用空间和剩余空间。通过定期调用这些API并比较不同时间点的数据,程序可以计算出磁盘空间的变化,...

    硬盘工作原理及数据存储原理

    硬盘的数据存储原理涉及到RAID(Redundant Array of Independent Disks)技术,这是一系列用于提高数据安全性、性能或两者兼有的磁盘存储方法。例如,RAID 0通过数据条带化提高读写速度,但无冗余;RAID 1则是镜像...

    操作系统课设磁盘空间管理实验

    操作系统中的磁盘空间管理是确保文件系统有效运行的关键部分。在进行“操作系统课设磁盘空间管理实验”时,学生需要模拟磁盘空间的分配和回收机制,以便理解和掌握操作系统如何处理存储资源。以下是关于磁盘空间管理...

    学习操作系统3(银行家算法、磁盘空间管理、文件目录管理)

    在这个学习包中,我们将聚焦三个关键的领域:银行家算法、磁盘空间管理以及文件目录管理。 首先,我们来看“银行家算法”。这是一个用于预防死锁的经典算法,由E.F.科德在1965年提出。在操作系统中,多个进程可能会...

    Linux系统中磁盘存储区管理原理与技巧

    在Linux系统中,磁盘存储区的管理是操作系统的核心任务之一,涉及到系统性能和稳定性。本文主要探讨了Linux特有的交换空间...正确配置和管理交换空间,结合有效的磁盘空间监控,可以帮助提升系统的整体效率和稳定性。

    VMware虚拟机Mac OS X无法调整扩展硬盘大小,更新xcode时出现磁盘空间不足

    在使用VMware虚拟机运行Mac OS X系统时,可能会遇到一些存储管理方面的问题,尤其是在进行软件更新或安装大型应用如Xcode时,可能会提示磁盘空间不足。这主要是因为虚拟机的硬盘空间分配有限,而扩展虚拟硬盘大小并...

Global site tag (gtag.js) - Google Analytics