Object类中,共有12个方法,对这些方法的理解程度直接关系到写代码的深度。
本人把该贴置顶,也是为了在不断学习和理解中,慢慢完善对Object类的理解。
package java.lang;
public class Object {
// 调用本地方法,具体内容应该在dll文件中。
private static native void registerNatives();
static {
registerNatives();
}
/* 返回此 Object 的运行时类。*/
public final native Class<?> getClass();
/*
hashCode 的常规协定是:
1.在 Java 应用程序执行期间,在对同一对象多次调用 hashCode 方法时,必须一致地返回相同的整数,前提是将对象进行 equals 比较时所用的信息没有被修改。从某一应用程序的一次执行到同一应用程序的另一次执行,该整数无需保持一致。
2.如果根据 equals(Object) 方法,两个对象是相等的,那么对这两个对象中的每个对象调用 hashCode 方法都必须生成相同的整数结果。
3.如果根据 equals(java.lang.Object) 方法,两个对象不相等,那么对这两个对象中的任一对象上调用 hashCode 方法不 要求一定生成不同的整数结果。但是,程序员应该意识到,为不相等的对象生成不同整数结果可以提高哈希表的性能。
*/
public native int hashCode();
public boolean equals(Object obj) {
return (this == obj);
}
protected native Object clone() throws CloneNotSupportedException;
/*返回该对象的字符串表示。*/
public String toString() {
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}
/*唤醒在此对象监视器上等待的单个线程。*/
public final native void notify();
/*唤醒在此对象监视器上等待的所有线程。*/
public final native void notifyAll();
/*在其他线程调用此对象的 notify() 方法或 notifyAll() 方法前,导致当前线程等待。换句话说,此方法的行为就好像它仅执行 wait(0) 调用一样。
当前线程必须拥有此对象监视器。该线程发布对此监视器的所有权并等待,直到其他线程通过调用 notify 方法,或 notifyAll 方法通知在此对象的监视器上等待的线程醒来。然后该线程将等到重新获得对监视器的所有权后才能继续执行。*/
public final void wait() throws InterruptedException {
wait(0);
}
/*在其他线程调用此对象的 notify() 方法或 notifyAll() 方法,或者超过指定的时间量前,导致当前线程等待。*/
public final native void wait(long timeout) throws InterruptedException;
/* 在其他线程调用此对象的 notify() 方法或 notifyAll() 方法,或者其他某个线程中断当前线程,或者已超过某个实际时间量前,导致当前线程等待。*/
public final void wait(long timeout, int nanos) throws InterruptedException {
if (timeout < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (nanos < 0 || nanos > 999999) {
throw new IllegalArgumentException(
"nanosecond timeout value out of range");
}
if (nanos >= 500000 || (nanos != 0 && timeout == 0)) {
timeout++;
}
wait(timeout);
}
/*当垃圾回收器确定不存在对该对象的更多引用时,由对象的垃圾回收器调用此方法。*/
protected void finalize() throws Throwable { }
}
分享到:
相关推荐
项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
手语图像分类数据集【已标注,约2,500张数据】 分类个数【36】:0、1、a、b等【具体查看json文件】 划分了训练集、测试集。存放各自的同一类数据图片。如果想可视化数据集,可以运行资源中的show脚本。 CNN分类网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 【更多图像分类、图像分割(医学)、目标检测(yolo)的项目以及相应网络的改进,可以参考本人主页:https://blog.csdn.net/qq_44886601/category_12803200.html】
CNCAP 2024打分表
系统可以提供信息显示和相应服务,其管理智慧校园管理系统信息,查看智慧校园管理系统信息,管理智慧校园管理系统。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 部署容器:tomcat7 小程序开发工具:hbuildx/微信开发者工具
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
影音互动科普网站功能描述 影音互动科普网站旨在通过多媒体形式(视频、音频、互动内容等)传播科学知识,提高公众的科学素养。该网站结合娱乐与教育,提供易于理解的科普内容,吸引不同年龄层次的用户参与和学习。以下是该网站的主要功能描述: 1. 用户注册与登录 用户注册:用户可以通过电子邮箱、手机号或社交账号(如微信、微博等)注册,提供基本信息并设置密码。 用户登录:支持通过注册的账号登录,保障个人信息的安全性,并提供自动登录功能。 2. 科普视频与音频库 视频内容:网站提供各类科普视频,包括短视频、纪录片、讲座、实验演示等,覆盖物理、化学、生物、地理、天文等多个领域。 音频内容:提供科普音频节目,如科普广播、播客、专题讲座等,便于用户在日常生活中进行学习。 视频分类:按科目、难度、年龄层、时长等维度对视频和音频进行分类,帮助用户更精准地找到感兴趣的内容。 字幕与多语言支持:提供字幕、翻译和多语种版本,帮助不同语言的用户学习。 3. 互动问答与讨论区 专家问答:用户可以向科普专家提问,专家提供详尽的解答,解决用户的科学疑惑。 社区讨论:用户可以在视频下方或专题页面中发表评论、提问或与其他用户
倪海厦讲义及笔记,易学数据测算
内容概要:本文档是《组合数学答案-网络流传版.pdf》的内容,主要包含了排列组合的基础知识以及一些经典的组合数学题目。这些题目涵盖了从排列数计算、二项式定理的应用到容斥原理的实际应用等方面。通过对这些题目的解析,帮助读者加深对组合数学概念和技巧的理解。 适用人群:适合初学者和有一定基础的学习者。 使用场景及目标:可以在学习组合数学课程时作为练习题参考,也可以在复习考试或准备竞赛时使用,目的是提高解决组合数学问题的能力。 其他说明:文档中的题目覆盖了组合数学的基本知识点,适合逐步深入学习。每个题目都有详细的解答步骤,有助于读者掌握解题思路和方法。
内容概要:本文是一篇完整的管理系统开发指南,详细介绍了功能要求、技术栈选择、数据库设计、用户界面搭建以及安全控制等方面的内容。功能要求包括用户管理、权限控制、数据管理、系统日志、通知与消息、统计分析和扩展模块。使用的技术栈涵盖了后端(Java、Python、C#等)和前端(React、Vue.js、Angular等)技术,以及数据库设计和安全控制措施。 适合人群:具备一定开发经验的软件工程师和技术管理人员。 使用场景及目标:适用于企业级管理系统开发项目,旨在构建一个高效、安全且易于扩展的系统。开发者可以参考本文档进行系统的设计和实现,确保系统满足业务需求。 其他说明:本文档提供了详细的步骤和最佳实践,帮助开发者更好地理解和应用管理系统开发的各种技术。通过结合实际案例和实践经验,本文档能够为开发者提供有价值的指导。
听器听力损伤程度分级表.docx
MATLAB代码:基于条件风险价值的合作型Stackerlberg博弈微网动态定价与优化调度 关键词:微网优化调度 条件风险价值 合作博弈 纳什谈判 参考文档:《A cooperative Stackelberg game based energy management considering price discrimination and risk assessment》完美复现 仿真平台:MATLAB yalmip+cplex+mosek 主要内容:代码主要做的是一个基于合作型Stackerlberg博弈的考虑差别定价和风险管理的微网动态定价与调度策略,提出了一个双层能源管理框架,实现多个微网间的P2P能源交易,上层为零商的动态定价模型,目标是社会福利最大化;下层是多个产消者的合作博弈模型,优化各产消者的能量管理策略。 同时,采用纳什谈判法对多个产消者的合作剩余进行公平分配,还考虑了运行风险,采用条件风险价值(CVaR)随机规划方法来描述零商的预期损失。 求解方面,双层模型被基于KKT条件转为单层模型,模型可以高效求解。 这段代码是一个基于合作型Stackelberg博弈的微网
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
20块钱买的【动漫网页设计】源码,免费分享出来啦,如果要积分那是系统自动涨的啦。 内容概要:本资源是一份动漫网页设计的源码,价格仅为20元,作者将其免费分享给大家。该源码包含了动漫元素的设计,包括背景、图标、按钮等,同时也提供了一些常见的网页布局和交互效果。通过该资源,可以学习到动漫网页设计的基本原理和技巧。 适用人群:本资源适用于对动漫网页设计感兴趣的人群,包括网页设计师、UI设计师、前端开发工程师等。同时,对于想要学习动漫网页设计的初学者也非常适用。 使用场景及目标:该资源可以用于学习和实践动漫网页设计的技巧和原理。通过学习该源码,可以了解到动漫网页设计的基本要素和设计思路,同时也可以借鉴其中的设计元素和交互效果,应用到自己的网页设计中。 其他说明:本资源是作者自己设计的,经过了多次修改和优化,具有一定的参考价值。同时,作者也将其价格设置的非常低,希望更多的人可以学习到动漫网页设计的技巧和方法。如果您对该资源有任何疑问或建议,欢迎在评论区留言,作者会尽快回复。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
自考 本科 C++程序设计-课本 参考答案
每周质量安全排查报告.docx
YOLO算法-杂草检测项目数据集-3970张图像带标签-杂草.zip
内存搜索工具(易).rar
AI大模型研究相关报告