From Wikipedia, the free encyclopedia
<!-- start content -->
In statistics, a copula is used as a general way of formulating a multivariate distribution in such a way that various general types of dependence can be represented.[1] Other ways of formulating multivariate distributions include conceptually-based approaches in which the real-world meaning of the variables is used to imply what types of relationships might occur. In contrast, the approach via copulas might be considered as being more raw, but it does allow much more general types of dependencies to be included than would usually be invoked by a conceptual approach.
The approach to formulating a multivariate distribution using a copula is based on the idea that a simple transformation can be made of each marginal variable in such a way that each transformed marginal variable has a uniform distribution. Once this is done, the dependence structure can be expressed as a multivariate distribution on the obtained uniforms, and a copula is precisely a multivariate distribution on marginally uniform random variables. When applied in a practical context, the above transformations might be fitted as an initial step for each margin, or the parameters of the transformations might be fitted jointly with those of the copula.
There are many families of copulas which differ in the detail of the dependence they represent. A family will typically have several parameters which relate to the strength and form of the dependence. Some families of copulas are outlined below. A typical use for copulas is to choose one such family and use it to define the multivariate distribution to be used, typically in fitting a distribution to a sample of data. However, it is possible to derive the copula corresponding to any given multivariate distribution.
[edit] The basic idea
Consider two random variables X and Y, with continuous cumulative distribution functions FX and FY. The probability integral transform can be applied separately to the two random variables to define X’ = FX(X) and Y’ = FY(Y). It follows that X’ and Y’ both have uniform distributions but are, in general, dependent. Since the transforms are invertible, specifying the dependence between X and Y is, in a way, the same as specifying dependence between X’ and Y’. With X’ and Y’ being uniform random variables, the problem reduces to specifying a bivariate distribution between two uniforms, that is a copula. So the idea is to simplify the problem by removing consideration of many different marginal distributions by transforming the marginal variates to uniforms, and then specifying dependence as a multivariate distribution on the uniforms.
[edit] Definition
A copula is a multivariate joint distribution defined on the n-dimensional unit cube [0,1]n such that every marginal distribution is uniform on the interval [0,1].
Specifically, is an n-dimensional copula (briefly, n-copula) if:
whenever has at least one component equal to 0;
whenever has all the components equal to 1 except the ith one, which is equal to ui;
is n-increasing, i.e., for each hyperrectangle
where the . is the so called C-volume of B.
[edit] Sklar's theorem
The theorem proposed by Sklar [2] underlies most applications of the copula. Sklar's theorem states that given a joint distribution function H for p variables, and respective marginal distribution functions, there exists a copula C such that the copula binds the margins to give the joint distribution.
For the bivariate case, Sklar's theorem can be stated as follows. For any bivariate distribution function H(x,y), let F(x)=H(x,∞) and G(y)=H(∞,y) be the univariate marginal probability distribution functions. Then there exists a copula C such that
(where we have identified the distribution C with its cumulative distribution function). Moreover, if marginal distributions F(x) and G(y) are continuous, the copula function C is unique. Otherwise, the copula C is unique on the range of values of the marginal distributions.
[edit] Fréchet–Hoeffding copula boundaries
Graphs of the Fréchet–Hoeffding copula limits and of the independence copula (in the middle).
Minimum copula: This is the lower bound for all copulas. In the bivariate case only, it represents perfect negative dependence between variates.
For n-variate copulas, the lower bound is given by
Maximum copula: This is the upper bound for all copulas. It represents perfect positive dependence between variates:
For n-variate copulas, the upper bound is given by
Conclusion: For all copulas C(u,v),
In the multivariate case, the corresponding inequality is
[edit] Families of copula
[edit] Gaussian copula
Cumulative distribution and probability density functions of Gaussian copula with
ρ=0.4
One example of a copula often used for modelling in finance is the Gaussian copula, which is constructed from the bivariate normal distribution via Sklar's theorem. With Φρ being the standard bivariate normal cumulative distribution function with correlation ρ, the Gaussian copula function is
where u and and Φ denotes the standard normal cumulative distribution function.
Differentiating C yields the copula density function:
where
is the density function for the standard bivariate gaussian with Pearson's product moment correlation coefficient ρ and φ is the standard normal density.
[edit] Archimedean copulas
Archimedean copulas are an important family of copulas, which have a simple form with properties such as associativity and have a variety of dependence structures. Unlike elliptical copulas (eg. Gaussian), most of the Archimedean copulas have closed-form solutions and are not derived from the multivariate distribution functions using Sklar’s Theorem.
One particularly simple form of a n-dimensional copula is
where Ψ is known as a generator function. Such copulas are known as Archimedean. Any generator function which satisfies the properties below is the basis for a valid copula:
Product copula: Also called the independent copula, this copula has no dependence between variates. Its density function is unity everywhere.
Where the generator function is indexed by a parameter, a whole family of copulas may be Archimedean. For example:
Clayton copula:
For θ = 0 in the Clayton copula, the random variables are statistically independent. The generator function approach can be extended to create multivariate copulas, by simply including more additive terms.
Gumbel copula:
Frank copula:
[edit] Periodic copula
Aurélien Alfonsi and Damiano Brigo (2005)[3] introduced new families of copulas based on periodic functions. They noticed that if ƒ is a 1-periodic non-negative function that integrates to 1 over [0,1] and F is a double primitive of ƒ, then both
are copula functions, the second one not necessarily exchangeable. This may be a tool to introduce asymmetric dependence, which is absent in most known copula functions.
[edit] Empirical copulas
When analysing data with an unknown underlying distribution, one can transform the empirical data distribution into an "empirical copula" by warping such that the marginal distributions become uniform[1]. Mathematically the empirical copula frequency function is calculated by
where x(i) represents the ith order statistic of x.
Less formally, simply replace the data along each dimension with the data ranks divided by n.
[edit] Applications
Copulas are used in the pricing of collateralized debt obligations [4] (CDOs). Dependence modelling with copula functions is widely used in applications of financial risk assessment and actuarial analysis. Recently they have been successfully applied to the database formulation for the reliability analysis of Highway bridges and to various multivariate simulation studies in Civil, Mechanical and Offshore engineering.[citation needed]. The methodology of applying the Gaussian copula to credit derivatives as developed by David X. Li is said to be the reason behind the global financial crisis of 2008–2009.[5]
[edit] See also
[edit] References
- ^ a b Roger B. Nelsen (1999), An Introduction to Copulas. ISBN 0-387-98623-5.
-
^ Sklar (1959)
-
^ Alfonsi, A., and D. Brigo (2005). Comm. Statist. Theory Methods 34 (2005) 1437–1447
-
^ Meneguzzo, David; Walter Vecchiato (Nov 2003). "Copula sensitivity in collateralized debt obligations and basket default swaps". Journal of Futures Markets 24 (1): 37–70. doi:10.1002/fut.10110.
-
^ http://www.wired.com/techbiz/it/magazine/17-03/wp_quant?currentPage=all
[edit] General
- David G. Clayton (1978), "A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence", Biometrika 65, 141–151. JSTOR (subscription)
- Frees, E.W., Valdez, E.A. (1998), "Understanding Relationships Using Copulas", North American Actuarial Journal 2, 1–25. Link to NAAJ copy
- Roger B. Nelsen (1999), An Introduction to Copulas. ISBN 0-387-98623-5.
- S. Rachev, C. Menn, F. Fabozzi (2005), Fat-Tailed and Skewed Asset Return Distributions. ISBN 0-471-71886-6.
- A. Sklar (1959), "Fonctions de répartition à n dimensions et leurs marges", Publications de l'Institut de Statistique de L'Université de Paris 8, 229-231.
- C. Schölzel, P. Friederichs (2008), "Multivariate non-normally distributed random variables in climate research – introduction to the copula approach". PDF
- W.T. Shaw, K.T.A. Lee (2006), "Copula Methods vs Canonical Multivariate Distributions: The Multivariate Student T Distibution with General Degrees of Freedom". PDF
- Srinivas Sriramula, Devdas Menon and A. Meher Prasad (2006), "Multivariate Simulation and Multimodal Dependence Modeling of Vehicle Axle Weights with Copulas", ASCE Journal of Transportation Engineering 132 (12), 945–955. (doi 10.1061/(ASCE)0733-947X(2006)132:12(945)) ASCE(subscription)
-
Genest, C.; MacKay, R.J. (1986), "The Joy of Copulas: Bivariate Distributions with Uniform Marginals", The American Statistician 40: 280–283, doi:10.2307/2684602
[edit] External links
<!--
NewPP limit report
Preprocessor node count: 1400/1000000
Post-expand include size: 9875/2048000 bytes
Template argument size: 2439/2048000 bytes
Expensive parser function count: 1/500
--><!-- Saved in parser cache with key enwiki:pcache:idhash:1793003-0!1!0!default!!en!2 and timestamp 20090318162940 -->
分享到:
相关推荐
《帕顿Copula工具箱:理解和应用》 Copula理论是概率统计学中的一种重要工具,它在金融风险分析、依赖性建模以及多元分布研究等领域有着广泛的应用。Patton_copula_toolbox是一个专门用于处理和分析Copula的程序包...
在“1.zip_copula_copula多元_nines copula_二元copula_多元copula”这个压缩包中,我们重点关注的是二元Copula和多元Copula的计算和应用。 首先,二元Copula是连接两个随机变量的数学构造,它将这两个变量的联合...
Copula函数的类型主要有弗兰克(Frank) Copula、 Clayton Copula、Gumbel Copula(又称为Hormann Copula)和Joe Copula等,它们各自对应不同的相关性和尾部依赖性。例如,Frank Copula适用于对称的或负相关的数据,而...
《Copula:构建依赖性的数学工具》 在统计学和金融工程领域,Copula方法是一种强大的工具,用于描述变量间的联合分布,即使这些变量的边际分布是不同的。Copula的概念源于概率论,它允许我们将独立的边际分布与任意...
在数据分析和统计建模领域,Copula方法是一种强大的工具,用于建立变量间的依赖关系,尤其在处理非独立同分布的数据时。本主题主要探讨的是如何使用`copula`函数进行Copula拟合,并通过计算AIC(Akaike Information ...
Matlab code for simulating Clayton copula, Frank copula, Gumbel copula, Gaussian copula and Student t-copula
【标题】"VineCopulaCPP-master_copula_matlab_藤copula_藤copula_copulamatlab_" 指的是一个基于C++的藤Copula库,该库被封装为Matlab接口,方便在Matlab环境中进行藤Copula的建模和分析。藤Copula(Vine Copula)...
《Copula函数在边坡稳定性分析中的应用》 Copula函数是统计学中的一种重要工具,主要用于描述不同随机变量之间的依赖关系。在边坡工程领域,理解土壤、岩石和其他地质结构之间的相互作用对于评估边坡稳定性至关...
《多维Copula模型及其在相关性分析中的应用》 Copula模型,源自统计学领域,是一种用于构建不同随机变量间依赖关系的工具,尤其在处理多维数据的相关性分析时展现出强大的灵活性和广泛的应用性。Copula的概念首次由...
在数据分析和统计建模领域,Copula方法是一种强大的工具,用于建立不同随机变量之间的依赖关系。Copula函数允许我们分离联合分布的边缘分布和依赖结构,使得我们可以独立地处理这两个方面。本文将深入探讨...
Copula函数是统计学和风险管理领域中的一个重要工具,特别是在金融工程中用于建模不同资产之间的相关性。在R语言中,处理Copula的库提供了丰富的功能,使得分析者能够更好地理解数据间的依赖结构。本资源包含的是R...
标题“copula_wireo3t_估计copula参数_混合copula函数_matlabcopula_matlabcopula函数”表明了这个项目的核心内容,它涉及到了一个特定的Copula类型——Wireo3t Copula,以及如何在MATLAB环境中使用内置的`...
在MATLAB中,Copula函数是一个强大的工具,用于构建和分析多变量联合分布。Copula方法的核心思想是将多元随机变量的概率分布分解为单个边际分布和一个描述这些分布之间依赖关系的Copula函数。这种方法在金融工程、...
Copula理论是统计学中处理变量间依赖关系的一种方法,尤其在金融工程、风险管理等领域有广泛应用。在本项目中,我们将探讨如何使用MATLAB来实现Copula函数进行二维联合重现期(Joint Return Period,JRP)的计算。...
该工具包是最新版本的pair copula工具包。可实现高维数据的copula建模,并有时变copula函数可选择。
《Copula-CoVaR在R语言中的实现及应用详解》 Copula-CoVaR是一种将Copula理论与Conditional Value at Risk (CoVaR)相结合的风险评估方法,它在金融风险管理领域有着广泛的应用。本文将详细讲解如何在R语言环境下...
matlab中的COPULA工具箱,内含1. Normal Copula,2. Clayton's copula,3. Rotated Clayton copula,4. Plackett copula,5. Frank copula,6. Gumbel copula,7. Rotated Gumbel copula,8. Student's t copula,9....
在实际应用中,最常见的Copula类型包括Gaussian Copula(高斯Copula)、Frank Copula、Clayton Copula和Gumbel Copula,它们分别对应不同类型的依赖性质:线性、反向、对数超几何和极值依赖。 Gaussian Copula因其...
Copula是一种统计学概念,用于建模多元随机变量之间的依赖关系。在金融、保险和风险管理等领域,Copula方法被广泛应用于复杂数据结构的建模,因为它可以独立地处理每个变量的边际分布,同时保留它们之间的相关性。在...
《深入理解R语言Copula:探索与应用》 在数据科学和统计学领域, Copula方法因其在处理依赖性问题上的强大能力而受到广泛关注。R语言作为一种强大的统计分析工具,提供了丰富的库和函数来实现Copula理论的应用。...