- 浏览: 285113 次
- 性别:
- 来自: 广州
文章分类
- 全部博客 (247)
- free talking (11)
- java (18)
- search (16)
- hbase (34)
- open-sources (0)
- architect (1)
- zookeeper (16)
- vm (1)
- hadoop (34)
- nutch (33)
- lucene (5)
- ubuntu/shell (8)
- ant (0)
- mapreduce (5)
- hdfs (2)
- hadoop sources reading (13)
- AI (0)
- distributed tech (1)
- others (1)
- maths (6)
- english (1)
- art & entertainment (1)
- nosql (1)
- algorithms (8)
- hadoop-2.5 (16)
- hbase-0.94.2 source (28)
- zookeeper-3.4.3 source reading (1)
- solr (1)
- TODO (3)
- JVM optimization (1)
- architecture (0)
- hbase-guideline (1)
- data mining (3)
- hive (1)
- mahout (0)
- spark (28)
- scala (3)
- python (0)
- machine learning (1)
最新评论
-
jpsb:
...
为什么需要分布式? -
leibnitz:
hi guy, this is used as develo ...
compile hadoop-2.5.x on OS X(macbook) -
string2020:
撸主真土豪,在苹果里面玩大数据.
compile hadoop-2.5.x on OS X(macbook) -
youngliu_liu:
怎样运行这个脚本啊??大牛,我刚进入搜索引擎行业,希望你能不吝 ...
nutch 数据增量更新 -
leibnitz:
also, there is a similar bug ...
2。hbase CRUD--Lease in hbase
The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-3). DistributedFileSystem makes an RPC call to the namenode to create a new
file in the filesystem’s namespace, with no blocks associated with it (step 2). The name-
node performs various checks to make sure the file doesn’t already exist, and that the
client has the right permissions to create the file. If these checks pass, the namenode
makes a record of the new file; otherwise, file creation fails and the client is thrown an
IOException. The DistributedFileSystem returns a FSDataOutputStream for the client to
start writing data to. Just as in the read case, FSDataOutputStream wraps a DFSOutput
Stream, which handles communication with the datanodes and namenode.
As the client writes data (step 3), DFSOutputStream splits it into packets, which it writes
to an internal queue, called the data queue. The data queue is consumed by the Data
Streamer, whose responsibility it is to ask the namenode to allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline—we’ll assume the replication level is 3, so there are three nodes in the pipeline.
The DataStreamer streams the packets to the first datanode in the pipeline, which stores
the packet and forwards it to the second datanode in the pipeline. Similarly, the second
datanode stores the packet and forwards it to the third (and last) datanode in the pipe-
line (step 4).
DFSOutputStream also maintains an internal queue of packets that are waiting to be
acknowledged by datanodes, called the ack queue. A packet is removed from the ack
queue only when it has been acknowledged by all the datanodes in the pipeline (step 5).
If a datanode fails while data is being written to it, then the following actions are taken,
which are transparent to the client writing the data. First the pipeline is closed, and any
packets in the ack queue are added to the front of the data queue so that datanodes
that are downstream from the failed node will not miss any packets. The current block
on the good datanodes is given a new identity, which is communicated to the name-
node, so that the partial block on the failed datanode will be deleted if the failed data-
node recovers later on. The failed datanode is removed from the pipeline and the
remainder of the block’s data is written to the two good datanodes in the pipeline. The
namenode notices that the block is under-replicated, and it arranges for a further replica
to be created on another node. Subsequent blocks are then treated as normal.
It’s possible, but unlikely, that multiple datanodes fail while a block is being written.
As long as dfs.replication.min replicas (default one) are written the write will succeed,
and the block will be asynchronously replicated across the cluster until its target rep-
lication factor is reached (dfs.replication, which defaults to three).
When the client has finished writing data it calls close() on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for ac-
knowledgments before contacting the namenode to signal that the file is complete (step
7). The namenode already knows which blocks the file is made up of (via Data
Streamer asking for block allocations), so it only has to wait for blocks to be minimally
replicated before returning successfully.
发表评论
-
hadoop-replication written flow
2017-08-14 17:00 563w:net write r :net read( ... -
hbase-export table to json file
2015-12-25 17:21 1672i wanna export a table to j ... -
yarn-similar logs when starting up container
2015-12-09 17:17 95415/12/09 16:47:52 INFO yarn.E ... -
hadoop-compression
2015-10-26 16:52 496http://blog.cloudera.com/blog ... -
hoya--hbase on yarn
2015-04-23 17:00 449Introducing Hoya – HBase on YA ... -
compile hadoop-2.5.x on OS X(macbook)
2014-10-30 15:42 2503same as compile hbase ,it ' ... -
upgrades of hadoop and hbase
2014-10-28 11:39 7481.the match relationships ... -
how to submit jars to a map reduce job?
2014-04-02 01:23 550there maybe two ways : 1.serv ... -
install snappy compression in hadoop and hbase
2014-03-08 00:36 4621.what is snappy ... -
3。hbase rpc/ipc/proxy通信机制
2013-07-15 15:12 1309一。RPC VS IPC (relationship/di ... -
hadoop-2 dfs/yarn 相关概念
2012-10-03 00:22 1916一.dfs 1.旧的dfs方案 可以看到bloc ... -
hadoop 删除节点(Decommission nodes)
2012-09-02 03:28 2686具体的操作步骤网上已经很多,这里只说明一下自己操作过程注意事项 ... -
hadoop 2(0.23.x) 与 0.20.x比较
2012-07-01 12:09 2211以下大部分内容来自网络,这里主要是进行学习,比较 1、 ... -
hadoop-2.0 alpha standalone install
2012-06-10 12:02 2514看了一堆不太相关的东西... 其实只要解压运行即可,形 ... -
hadoop源码阅读-shell启动流程-start-all
2012-05-06 01:13 882when executes start-all.sh ... -
hadoop源码阅读-shell启动流程
2012-05-03 01:58 1891open the bin/hadoop file,you w ... -
hadoop源码阅读-第二回阅读开始
2012-05-03 01:03 1034出于工作需要及版本更新带来的变动,现在开始再次进入源码 ... -
hadoop 联合 join操作
2012-01-02 18:06 1061hadoop join操作类似于sql中的功能,就是对多表进行 ... -
hadoop几种排序简介
2011-12-16 21:52 1626在map reduce框架中,除了常用的分布式计算外,排序也算 ... -
nutch搜索架构关键类
2011-12-13 00:19 14todo
相关推荐
【标题】"hdfs-over-ftp安装包及说明"涉及的核心技术是将FTP(File Transfer Protocol)服务与HDFS(Hadoop Distributed File System)相结合,允许用户通过FTP协议访问和操作HDFS上的数据。这个标题暗示了我们将在...
Hadoop 3.x(HDFS)----【HDFS 的 API 操作】---- 代码 Hadoop 3.x(HDFS)----【HDFS 的 API 操作】---- 代码 Hadoop 3.x(HDFS)----【HDFS 的 API 操作】---- 代码 Hadoop 3.x(HDFS)----【HDFS 的 API 操作】--...
大数据 hdfs-over-ftp jar包。 基于maven工程打包的可执行jar包,支持hadoop版本cdh5.12.1,以及kerberos认证,配置kerberos信息的核心配置文件core.properties,下载集群相关认证信息配置即可,其他配置文件信息是...
标题 "hdfs-over-ftp-hadoop-0.20.0.rar" 提示我们关注的是一个关于将HDFS(Hadoop Distributed File System)与FTP(File Transfer Protocol)整合的项目,特别适用于版本0.20.0的Hadoop。这个项目可能提供了在...
赠送jar包:hadoop-hdfs-client-2.9.1.jar 赠送原API文档:hadoop-hdfs-client-2.9.1-javadoc.jar 赠送源代码:hadoop-hdfs-client-2.9.1-sources.jar 包含翻译后的API文档:hadoop-hdfs-client-2.9.1-javadoc-...
在本文档中,我们首先了解了如何通过Hadoop 2.7.1实现HDFS与FTP的结合使用,称为hdfs-over-ftp。为了实现这一功能,我们需要经过几个步骤来配置和启动一个支持Hadoop文件系统的FTP服务器。 首先,文档提到了安装和...
赠送jar包:hadoop-hdfs-client-2.9.1.jar; 赠送原API文档:hadoop-hdfs-client-2.9.1-javadoc.jar; 赠送源代码:hadoop-hdfs-client-2.9.1-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-client-2.9.1.pom;...
赠送jar包:hadoop-hdfs-2.9.1.jar 赠送原API文档:hadoop-hdfs-2.9.1-javadoc.jar 赠送源代码:hadoop-hdfs-2.9.1-sources.jar 包含翻译后的API文档:hadoop-hdfs-2.9.1-javadoc-API文档-中文(简体)版.zip 对应...
赠送jar包:hadoop-hdfs-2.7.3.jar; 赠送原API文档:hadoop-hdfs-2.7.3-javadoc.jar; 赠送源代码:hadoop-hdfs-2.7.3-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-2.7.3.pom; 包含翻译后的API文档:hadoop...
赠送jar包:hadoop-hdfs-2.7.3.jar; 赠送原API文档:hadoop-hdfs-2.7.3-javadoc.jar; 赠送源代码:hadoop-hdfs-2.7.3-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-2.7.3.pom; 包含翻译后的API文档:hadoop...
赠送jar包:hadoop-hdfs-2.6.5.jar; 赠送原API文档:hadoop-hdfs-2.6.5-javadoc.jar; 赠送源代码:hadoop-hdfs-2.6.5-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-2.6.5.pom; 包含翻译后的API文档:hadoop...
hadoop-hdfs-test-0.21.0.jar
赠送jar包:hadoop-hdfs-2.5.1.jar; 赠送原API文档:hadoop-hdfs-2.5.1-javadoc.jar; 赠送源代码:hadoop-hdfs-2.5.1-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-2.5.1.pom; 包含翻译后的API文档:hadoop...
赠送jar包:hadoop-hdfs-2.6.5.jar; 赠送原API文档:hadoop-hdfs-2.6.5-javadoc.jar; 赠送源代码:hadoop-hdfs-2.6.5-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-2.6.5.pom; 包含翻译后的API文档:hadoop...
赠送jar包:hadoop-hdfs-2.9.1.jar; 赠送原API文档:hadoop-hdfs-2.9.1-javadoc.jar; 赠送源代码:hadoop-hdfs-2.9.1-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-2.9.1.pom; 包含翻译后的API文档:hadoop...
赠送jar包:hadoop-hdfs-2.5.1.jar; 赠送原API文档:hadoop-hdfs-2.5.1-javadoc.jar; 赠送源代码:hadoop-hdfs-2.5.1-sources.jar; 赠送Maven依赖信息文件:hadoop-hdfs-2.5.1.pom; 包含翻译后的API文档:hadoop...
ftp源码hdfs-over-ftp 工作在 HDFS 之上的 FTP 服务器源代码是在 MIT 许可下提供的 FTP 服务器可通过 hdfs-over-ftp.properties 和 users.properties 进行配置。 它允许通过 SSL 使用安全连接并支持所有 HDFS 权限。...
HDFS Java API 详解 HDFS(Hadoop Distributed File System)是 Hadoop 项目中的一部分,是一个分布式文件系统。HDFS Java API 是一组 Java 类库,提供了一组接口来操作 HDFS。下面我们将对 HDFS Java API 进行详细...
HttpFS作为一个独立服务,它不直接集成在Hadoop分布式文件系统中,而是作为中间层处理文件系统的操作请求,转发给HDFS集群进行处理。其主要功能是安全地代理HTTP客户端对HDFS的读写请求。 **一、HttpFS介绍** 1. *...
基于HDFS的FTP项目,可上传下载文件,开源