- 浏览: 53145 次
- 性别:
- 来自: 北京
最新评论
-
lehehe:
基站定位,使用接口很方便的,这里有免费的接口,你可以试试,ht ...
google API基站定位 -
donkeyji:
yongqi 写道hi,你好,请教一个问题我在安装python ...
python zeromq 介绍 -
yongqi:
hi,你好,请教一个问题我在安装python的zeromq包时 ...
python zeromq 介绍 -
mimicom:
看着晕乎乎的....
python zeromq 介绍 -
raojl:
不错,好像zeromq就在2011年一夜之间火了,特别的blo ...
python zeromq 介绍
1. The Socket API
- Creating and destroying sockets, which go together to form a karmic circle of socket life (see zmq_socket, zmq_close).
- Configuring sockets by setting options on them and checking them if necessary (see zmq_setsockopt, zmq_getsockopt).
- Plugging sockets onto the network topology by creating ØMQ connections to and from them (see zmq_bind, zmq_connect).
- Using the sockets to carry data by writing and receiving messages on them (see zmq_send, zmq_recv).
2.Plugging Sockets Into the Topology
- They go across an arbitrary transport (inproc, ipc, tcp, pgm or epgm). See zmq_inproc, zmq_ipc, zmq_tcp, zmq_pgm, and zmq_epgm.
- They exist when a client does zmq_connect to an endpoint, whether or not a server has already done zmq_bind to that endpoint.
- They are asynchronous, and have queues that magically exist where and when needed.
- They may express a certain "messaging pattern", according to the type of socket used at each end.
- One socket may have many outgoing and many incoming connections.
- There is no zmq_accept() method. When a socket is bound to an endpoint it automatically starts accepting connections.
- Your application code cannot work with these connections directly; they are encapsulated under the socket.
- ØMQ sockets carry messages, rather than bytes (as in TCP) or frames (as in UDP). A message is a length-specified blob of binary data. We'll come to messages shortly, their design is optimized for performance and thus somewhat tricky to understand.
- ØMQ sockets do their I/O in a background thread. This means that messages arrive in a local input queue, and are sent from a local output queue, no matter what your application is busy doing. These are configurable memory queues, by the way.
- ØMQ sockets can, depending on the socket type, be connected to (or from, it's the same) many other sockets. Where TCP emulates a one-to-one phone call, ØMQ implements one-to-many (like a radio broadcast), many-to-many (like a post office), many-to-one (like a mail box), and even one-to-one.
- ØMQ sockets can send to many endpoints (creating a fan-out model), or receive from many endpoints (creating a fan-in model).
4.Core Messaging Patterns
- Request-reply, which connects a set of clients to a set of services. This is a remote procedure call and task distribution pattern.
- Publish-subscribe, which connects a set of publishers to a set of subscribers. This is a data distribution pattern.
- Pipeline, connects nodes in a fan-out / fan-in pattern that can have multiple steps, and loops. This is a parallel task distribution and collection pattern.
We looked at each of these in the first chapter. There's one more pattern that people tend to try to use when they still think of ØMQ in terms of traditional TCP sockets:
- Exclusive pair, which connects two sockets in an exclusive pair. This is a low-level pattern for specific, advanced use-cases. We'll see an example at the end of this chapter.
- PUB and SUB
- REQ and REP
- REQ and XREP
- XREQ and REP
- XREQ and XREP
- XREQ and XREQ
- XREP and XREP
- PUSH and PULL
- PAIR and PAIR
5.Working with Messages
Note than when you have passed a message to zmq_send, 0MQ will clear the message, i.e. set the size to zero. You cannot send the same message twice, and you cannot access the message data after sending it.
6.Handling Multiple Sockets
In all the examples so far, the main loop of most examples has been:
1. wait for message on socket
2. process message
3. repeat
Let's start with a dirty hack, partly for the fun of not doing it right, but mainly because it lets me show you how to do non-blocking socket reads. Here is a simple example of reading from two sockets using non-blocking reads. This rather confused program acts both as a subscriber to weather updates, and a worker for parallel tasks:
# encoding: utf-8 # # Reading from multiple sockets # This version uses a simple recv loop # # Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)theory(dot)org> # import zmq import time # Prepare our context and sockets context = zmq.Context() # Connect to task ventilator receiver = context.socket(zmq.PULL) receiver.connect("tcp://localhost:5557") # Connect to weather server subscriber = context.socket(zmq.SUB) subscriber.connect("tcp://localhost:5556") subscriber.setsockopt(zmq.SUBSCRIBE, "10001") # Process messages from both sockets # We prioritize traffic from the task ventilator while True: # Process any waiting tasks while True: try: rc = receiver.recv(zmq.NOBLOCK) except zmq.ZMQError: break # process task # Process any waiting weather updates while True: try: rc = subscriber.recv(zmq.NOBLOCK) except zmq.ZMQError: break # process weather update # No activity, so sleep for 1 msec time.sleep(0.001)
Now let's see the same little senseless application done right, using zmq_poll
# encoding: utf-8 # # Reading from multiple sockets # This version uses zmq.Poller() # # Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)theory(dot)org> # import zmq # Prepare our context and sockets context = zmq.Context() # Connect to task ventilator receiver = context.socket(zmq.PULL) receiver.connect("tcp://localhost:5557") # Connect to weather server subscriber = context.socket(zmq.SUB) subscriber.connect("tcp://localhost:5556") subscriber.setsockopt(zmq.SUBSCRIBE, "10001") # Initialize poll set poller = zmq.Poller() poller.register(receiver, zmq.POLLIN) poller.register(subscriber, zmq.POLLIN) # Process messages from both sockets while True: socks = dict(poller.poll()) if receiver in socks and socks[receiver] == zmq.POLLIN: message = receiver.recv() # process task if subscriber in socks and socks[subscriber] == zmq.POLLIN: message = subscriber.recv() # process weather update
7. Handling Errors and ETERM
- Methods that create objects will return NULL in case they fail.
- Other methods will return 0 on success and other values (mostly -1) on an exceptional condition (usually failure).
- The error code is provided in errno or zmq_errno.
- A descriptive error text for logging is provided by zmq_strerror.
# encoding: utf-8 # # Task worker - design 2 # Adds pub-sub flow to receive and respond to kill signal # # Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)theory(dot)org> # import sys import time import zmq context = zmq.Context() # Socket to receive messages on receiver = context.socket(zmq.PULL) receiver.connect("tcp://localhost:5557") # Socket to send messages to sender = context.socket(zmq.PUSH) sender.connect("tcp://localhost:5558") # Socket for control input controller = context.socket(zmq.SUB) controller.connect("tcp://localhost:5559") controller.setsockopt(zmq.SUBSCRIBE, "") # Process messages from receiver and controller poller = zmq.Poller() poller.register(receiver, zmq.POLLIN) poller.register(controller, zmq.POLLIN) # Process messages from both sockets while True: socks = dict(poller.poll()) if socks.get(receiver) == zmq.POLLIN: message = receiver.recv() # Process task workload = int(message) # Workload in msecs # Do the work time.sleep(workload / 1000.0) # Send results to sink sender.send(message) # Simple progress indicator for the viewer sys.stdout.write(".") sys.stdout.flush() # Any waiting controller command acts as 'KILL' if socks.get(controller) == zmq.POLLIN: break
# encoding: utf-8 # # Task sink - design 2 # Adds pub-sub flow to send kill signal to workers # # Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)theory(dot)org> # import sys import time import zmq context = zmq.Context() # Socket to receive messages on receiver = context.socket(zmq.PULL) receiver.bind("tcp://*:5558") # Socket for worker control controller = context.socket(zmq.PUB) controller.bind("tcp://*:5559") # Wait for start of batch receiver.recv() # Start our clock now tstart = time.time() # Process 100 confirmiations for task_nbr in xrange(100): receiver.recv() if task_nbr % 10 == 0: sys.stdout.write(":") else: sys.stdout.write(".") sys.stdout.flush() # Calculate and report duration of batch tend = time.time() tdiff = tend - tstart total_msec = tdiff * 1000 print "Total elapsed time: %d msec" % total_msec # Send kill signal to workers controller.send("KILL") # Finished time.sleep(1) # Give 0MQ time to deliver
# Weather proxy device # # Author: Lev Givon <lev(at)columbia(dot)edu> import zmq context = zmq.Context() # This is where the weather server sits frontend = context.socket(zmq.SUB) frontend.connect("tcp://192.168.55.210:5556") # This is our public endpoint for subscribers backend = context.socket(zmq.PUB) backend.bind("tcp://10.1.1.0:8100") # Subscribe on everything frontend.setsockopt(zmq.SUBSCRIBE, '') # Shunt messages out to our own subscribers while True: while True: # Process all parts of the message message = frontend.recv() more = frontend.getsockopt(zmq.RCVMORE) if more: backend.send(message, zmq.SNDMORE) else: backend.send(message) break # Last message part
Luckily there are non-blocking versions of these two sockets, called XREQ and XREP. These "extended request/reply" sockets let you extend request-reply across intermediate nodes, such as our message queuing broker.
When we extend request-reply, REQ talks to XREP and XREQ talks to REP. In between the XREQ and XREP we have to have code (like our broker) that pulls messages off the one socket and shoves them onto the other.
The request-reply broker binds to two endpoints, one for clients to connect to (the frontend socket) and one for services to connect to (the backend). To test this broker, you will want to change your services so they connect to the backend socket. Here are a client and service that show what I mean:
# # Request-reply client in Python # Connects REQ socket to tcp://localhost:5559 # Sends "Hello" to server, expects "World" back # import zmq # Prepare our context and sockets context = zmq.Context() socket = context.socket(zmq.REQ) socket.connect("tcp://localhost:5559") # Do 10 requests, waiting each time for a response for request in range(1,10): socket.send("Hello") message = socket.recv() print "Received reply ", request, "[", message, "]"
# # Request-reply service in Python # Connects REP socket to tcp://localhost:5560 # Expects "Hello" from client, replies with "World" # import zmq context = zmq.Context() socket = context.socket(zmq.REP) socket.connect("tcp://localhost:5560") while True: message = socket.recv() print "Received request: ", message socket.send("World")
And here is the broker, in Python. You will see that it's multipart safe:
# author: Oleg Sidorov <4pcbr> i4pcbr@gmail.com # this code is licenced under the MIT/X11 licence. require 'rubygems' require 'ffi-rzmq' context = ZMQ::Context.new frontend = context.socket(ZMQ::XREP) backend = context.socket(ZMQ::XREQ) frontend.bind('tcp://*:5559') backend.bind('tcp://*:5560') poller = ZMQ::Poller.new poller.register(frontend, ZMQ::POLLIN) poller.register(backend, ZMQ::POLLIN) while true poller.poll(:blocking) poller.readables.each do |socket| if socket === frontend while true message = socket.recv_string more = socket.more_parts? backend.send_string(message, more ? ZMQ::SNDMORE : 0) break if !more end elsif socket === backend while true message = socket.recv_string more = socket.more_parts? frontend.send_string(message, more ? ZMQ::SNDMORE : 0) break if !more end end end end
Using a request-reply broker makes your client-server architectures easier to scale since clients don't see services, and services don't see clients. The only stable node is the device in the middle
Built-in Devices
ØMQ provides some built-in devices, though most advanced users write their own devices. The built-in devices are:
- QUEUE, which is like the request-reply broker.
- FORWARDER, which is like the pub-sub proxy server.
- STREAMER, which is like FORWARDER but for pipeline flows.
""" Simple message queuing broker Same as request-reply broker but using QUEUE device Author: Guillaume Aubert (gaubert) <guillaume(dot)aubert(at)gmail(dot)com> """ import zmq def main(): """ main method """ context = zmq.Context(1) # Socket facing clients frontend = context.socket(zmq.XREP) frontend.bind("tcp://*:5559") # Socket facing services backend = context.socket(zmq.XREQ) backend.bind("tcp://*:5560") zmq.device(zmq.QUEUE, frontend, backend) # We never get here... frontend.close() backend.close() context.term() if __name__ == "__main__": main()
12. Multithreading with 0MQ
""" Multithreaded Hello World server Author: Guillaume Aubert (gaubert) <guillaume(dot)aubert(at)gmail(dot)com> """ import time import threading import zmq def worker_routine(worker_url, context): """ Worker routine """ # Socket to talk to dispatcher socket = context.socket(zmq.REP) socket.connect(worker_url) while True: string = socket.recv() print("Received request: [%s]\n" % (string)) # do some 'work' time.sleep(1) #send reply back to client socket.send("World") def main(): """ server routine """ url_worker = "inproc://workers" url_client = "tcp://*:5555" # Prepare our context and sockets context = zmq.Context(1) # Socket to talk to clients clients = context.socket(zmq.XREP) clients.bind(url_client) # Socket to talk to workers workers = context.socket(zmq.XREQ) workers.bind(url_worker) # Launch pool of worker threads for i in range(5): thread = threading.Thread(target=worker_routine, args=(url_worker, context, )) thread.start() zmq.device(zmq.QUEUE, clients, workers) # We never get here but clean up anyhow clients.close() workers.close() context.term() if __name__ == "__main__": main()
13. Signaling between Threads
In this example we use PAIR sockets over the inproc transport:
""" Multithreaded relay Author: Guillaume Aubert (gaubert) <guillaume(dot)aubert(at)gmail(dot)com> """ import threading import zmq def step1(context): """ step1 """ # Signal downstream to step 2 sender = context.socket(zmq.PAIR) sender.connect("inproc://step2") sender.send("") def step2(context): """ step2 """ # Bind to inproc: endpoint, then start upstream thread receiver = context.socket(zmq.PAIR) receiver.bind("inproc://step2") thread = threading.Thread(target=step1, args=(context, )) thread.start() # Wait for signal string = receiver.recv() # Signal downstream to step 3 sender = context.socket(zmq.PAIR) sender.connect("inproc://step3") sender.send("") return def main(): """ server routine """ # Prepare our context and sockets context = zmq.Context(1) # Bind to inproc: endpoint, then start upstream thread receiver = context.socket(zmq.PAIR) receiver.bind("inproc://step3") thread = threading.Thread(target=step2, args=(context, )) thread.start() # Wait for signal string = receiver.recv() print("Test successful!\n") receiver.close() context.term() return if __name__ == "__main__": main()
14. Node Coordination
# # Synchronized publisher # import zmq # We wait for 10 subscribers SUBSCRIBERS_EXPECTED = 2 def main(): context = zmq.Context() # Socket to talk to clients publisher = context.socket(zmq.PUB) publisher.bind('tcp://*:5561') # Socket to receive signals syncservice = context.socket(zmq.REP) syncservice.bind('tcp://*:5562') # Get synchronization from subscribers subscribers = 0 while subscribers < SUBSCRIBERS_EXPECTED: # wait for synchronization request msg = syncservice.recv() # send synchronization reply syncservice.send('') subscribers += 1 print "+1 subscriber" # Now broadcast exactly 1M updates followed by END for i in range(1000000): publisher.send('Rhubarb'); publisher.send('END') if __name__ == '__main__': main()
# # Synchronized subscriber # import zmq def main(): context = zmq.Context() # First, connect our subscriber socket subscriber = context.socket(zmq.SUB) subscriber.connect('tcp://localhost:5561') subscriber.setsockopt(zmq.SUBSCRIBE, "") # Second, synchronize with publisher syncclient = context.socket(zmq.REQ) syncclient.connect('tcp://localhost:5562') # send a synchronization request syncclient.send('') # wait for synchronization reply syncclient.recv() # Third, get our updates and report how many we got nbr = 0 while True: msg = subscriber.recv() if msg == 'END': break nbr += 1 print 'Received %d updates' % nbr if __name__ == '__main__': main()
15. Transient vs. Durable Sockets
16. Pubsub Message Envelopes
""" Pubsub envelope publisher Author: Guillaume Aubert (gaubert) <guillaume(dot)aubert(at)gmail(dot)com> """ import time import zmq def main(): """ main method """ # Prepare our context and publisher context = zmq.Context(1) publisher = context.socket(zmq.PUB) publisher.bind("tcp://*:5563") while True: # Write two messages, each with an envelope and content publisher.send_multipart(["A", "We don't want to see this"]) publisher.send_multipart(["B", "We would like to see this"]) time.sleep(1) # We never get here but clean up anyhow publisher.close() context.term() if __name__ == "__main__": main()
"""
Pubsub envelope subscriber
Author: Guillaume Aubert (gaubert) <guillaume(dot)aubert(at)gmail(dot)com>
"""
import zmq
def main():
""" main method """
# Prepare our context and publisher
context = zmq.Context(1)
subscriber = context.socket(zmq.SUB)
subscriber.connect("tcp://localhost:5563")
subscriber.setsockopt(zmq.SUBSCRIBE, "B")
while True:
# Read envelope with address
[address, contents] = subscriber.recv_multipart()
print("[%s] %s\n" % (address, contents))
# We never get here but clean up anyhow
subscriber.close()
context.term()
if __name__ == "__main__":
main()
17. Making a (Semi-)Durable Subscriber
# encoding: utf-8 # # Publisher for durable subscriber # # Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)theory(dot)org> # import zmq import time context = zmq.Context() # Subscriber tells us when it's ready here sync = context.socket(zmq.PULL) sync.bind("tcp://*:5564") # We send updates via this socket publisher = context.socket(zmq.PUB) publisher.bind("tcp://*:5565") # Wait for synchronization request sync_request = sync.recv() # Now broadcast exactly 10 updates with pause for n in xrange(10): msg = "Update %d" % n publisher.send(msg) time.sleep(1) publisher.send("END") time.sleep(1) # Give 0MQ/2.0.x time to flush output
# encoding: utf-8 # # Durable subscriber # # Author: Jeremy Avnet (brainsik) <spork(dash)zmq(at)theory(dot)org> # import zmq import time context = zmq.Context() # Connect our subscriber socket subscriber = context.socket(zmq.SUB) subscriber.setsockopt(zmq.IDENTITY, "Hello") subscriber.setsockopt(zmq.SUBSCRIBE, "") subscriber.connect("tcp://localhost:5565") # Syncronize with the publisher sync = context.socket(zmq.PUSH) sync.connect("tcp://localhost:5564") sync.send("") # Get updates, expect random Ctrl-C death while True: data = subscriber.recv() print data if data == "END": break
We can put this together to make a cynical publisher that is immune to slow, blocked, or absent subscribers while still offering durable subscriptions to those that need it:
# Publisher for durable subscriber # # Author: Lev Givon <lev(at)columbia(dot)edu> import zmq import time context = zmq.Context() # Subscriber tells us when it's ready here sync = context.socket(zmq.PULL) sync.bind("tcp://*:5564") # We send updates via this socket publisher = context.socket(zmq.PUB) publisher.bind("tcp://*:5565") # Prevent publisher overflow from slow subscribers publisher.setsockopt(zmq.HWM, 1) # Specify the swap space in bytes, this covers all subscribers publisher.setsockopt(zmq.SWAP, 25000000) # Wait for synchronization request sync_request = sync.recv() # Now broadcast exactly 10 updates with pause for n in xrange(10): msg = "Update %d" % n publisher.send(msg) time.sleep(1) publisher.send("END") time.sleep(1) # Give 0MQ/2.0.x time to flush output
ps:
http://zguide.zeromq.org/page:all
发表评论
-
rails model best practices
2011-05-11 09:50 0name_scope :active, :conditions ... -
Ruby标准库
2011-05-10 15:02 0ruby标准库一览 文本 base64 yaml ... -
rails3测试理解
2011-04-30 10:23 1364Why RSpec? Clear, concise and ... -
linux系统备注
2011-04-29 10:49 1195bin "Essential binaries&qu ... -
vim备注
2011-04-29 10:03 0vim -
ruby
2011-04-28 10:33 1096Ruby编程基础知识概括: 1. ruby is an ob ... -
Javascript简明手册
2011-04-25 10:07 0Javascript和C++,java,Python一样是一种 ... -
KVM
2011-04-24 09:36 01 kvm安装 前期准备 ... -
Jquery
2011-04-22 16:10 01. jQuery解决了什么样的问题? -
CSS相关知识
2011-04-22 16:02 7431. CSS是一种为结构化文档添加样式的计算机语言 使 ... -
Mysql相关知识
2011-04-22 14:30 11811. Mysql常规使用 安装 server: sudo ... -
PF_RING
2011-04-14 14:38 20761. PF_RING 安装 A clean insta ... -
thrift实践
2011-04-08 11:52 14981 安装thrift 通过svn获得源码 svn co h ... -
Cmake + protobuf-c + python自定义协议通信
2011-03-29 11:25 4833Cmake是一套跨平台的工程构建工具 sudo apt ... -
清除历史记录
2011-03-18 10:40 01. 选型 [语言] C++ [平台] wind ... -
nginx X-Accel-Redirect实现文件下载权限控制及rails devise实现
2011-03-14 13:52 3346问题1:Nginx的X-Accel-Redirect? 答: ... -
python zeromq 介绍
2011-03-10 10:38 11167简介: ZeroMQ并不是一个对socket的封装,不能用它 ... -
fabric自动部署
2011-03-09 14:00 2633Fabric commands run - run a ... -
nagios的工作场景及使用说明
2011-03-08 10:15 2066问题1:nagios配置文件说明? 答: comman ... -
在ubuntu下安装nagios监控平台
2011-03-07 16:56 1604问题1:Nagios是什么? 答:是一个监视系统运行状态和网 ...
相关推荐
5. **Integration with Python Concurrency**:`pyzmq`能很好地与Python的多线程和多进程模型结合,支持使用`asyncio`进行异步编程。 6. **ZeroMQ Features**:包括流控制、负载均衡、故障恢复、消息持久化等特性,...
**Python库pyzmq详解** `pyzmq`是Python中的ZeroMQ库,它为Python提供了与ZeroMQ消息传递库的接口。ZeroMQ,又称零MQ或ØMQ,是一个跨平台、高...正确理解和使用`pyzmq`,可以显著提升Python应用程序的扩展性和性能。
《PyPI官网下载的PyZMQ 18.1.1版详解》 ...在Python 3.7环境下,使用"pyzmq-18.1.1-cp37-cp37m-manylinux1_i686.whl"这个特定版本的PyZMQ,开发者可以充分利用ZeroMQ的功能,为他们的项目带来更强大的网络通信能力。
在"pyzmq-24.0.1.tar"这个压缩包中,包含的是PyZMQ 24.0.1版本的源代码,用于Python环境下的安装和使用。值得注意的是,这并非一个预编译的二进制库,而是源代码形式的Python库,这意味着在使用前需要先进行编译和...
资源分类:Python库 所属语言:Python 使用前提:需要解压 资源全名:pyzmq-18.0.0-cp36-cp36m-manylinux1_i686.whl 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源分类:Python库 所属语言:Python 使用前提:需要解压 资源全名:pyzmq-17.1.0-cp34-cp34m-win_amd64.whl 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源分类:Python库 所属语言:Python 使用前提:需要解压 资源全名:pyzmq-2.2.0-py2.7-win-amd64.egg 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
PyZMQ应该与任何合理版本的Python(≥3.4),Python 2.7和3.3以及PyPy一起使用。 CPython使用的Cython后端支持libzmq≥2.1.4(包括3.2.x和4.x),但是PyPy使用的CFFI后端仅支持libzmq≥3.2.2(包括4.x)。 有关...
资源分类:Python库 所属语言:Python 使用前提:需要解压 资源全名:pyzmq-14.2.0-cp27-none-win_amd64.whl 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
安装完成后,即可在Python代码中导入并使用`pyzmq`库: ```python import zmq # 创建上下文 context = zmq.Context() # 创建套接字 socket = context.socket(zmq.REQ) # 连接到远程服务器 socket.connect("tcp:/...
为了解决这个问题,PyZMQ应运而生,它是Python对ZeroMQ的一个封装,使得在Python环境中使用ZeroMQ变得更加便捷。本文将深入探讨PyZMQ 16.0.2这一版本,解析其核心功能和使用方法。 PyZMQ是Python的ZeroMQ接口,它...
资源分类:Python库 所属语言:Python 使用前提:需要解压 资源全名:pyzmq-18.1.0-cp38-cp38-manylinux1_x86_64.whl 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
- 用户可以使用`easy_install`或`pip`工具安装pyzmq-14.3.0,解压后得到的`.egg`文件是一种Python的包格式,可以直接通过Python解释器导入使用。 - 为了更好地使用pyzmq,开发者需要了解ZeroMQ的通信模式,并根据...
离线安装包,测试可用。使用 pip install [完整包名] 进行安装
例如,使用`pyzmq`,你可以创建一个发布者(Publisher)来发送消息,同时创建一个订阅者(Subscriber)来接收这些消息,从而实现分布式系统的通信。 此外,`pyzmq`还支持其他高级特性,如管道(Pipes)、套接字选项...
6. **Concurrency(并发)**: `pyzmq`支持多线程和多进程并发模型,可以使用`pyzmq`的`Poller`类来轮询多个套接字的事件,提高程序的并行处理能力。 7. **Error Handling(错误处理)**: `pyzmq`提供了丰富的错误...
离线安装包,测试可用。使用 pip install [完整包名] 进行安装
离线安装包,测试可用。使用 pip install [完整包名] 进行安装
**使用pyzmq库** `pyzmq`库提供了丰富的API,可以实现以下功能: 1. 创建 ZeroMQ 套接字(sockets),包括PUB(发布者)、SUB(订阅者)、REQ(请求者)、REP(响应者)、DEALER(经销商)和ROUTER(路由器)等。 2...
以下是一个简单的REQ/REP模式的示例,展示了如何使用pyzmq创建一个请求-响应式的服务: ```python import zmq # 创建上下文 context = zmq.Context() # 创建客户端Socket并连接到服务器 client = context.socket...