- 浏览: 1064659 次
- 性别:
- 来自: 长沙
文章分类
- 全部博客 (639)
- 服务器配置篇 (58)
- hibernate篇 (14)
- spring篇 (33)
- struts篇 (28)
- JS篇 (46)
- 其他技术篇 (46)
- 数据库集群配置 (6)
- JAVA基础相关 (48)
- 分布式框架HadHoop的应用 (2)
- FLEX篇 (8)
- SQLSERVER技术 (32)
- Android学习 (13)
- amchart学习笔记 (1)
- openfire+smark搭建即时通讯 (9)
- Linux学习 (18)
- Oracle数据库 (15)
- 网站优化技术 (12)
- mysql数据库 (2)
- 项目学习总结 (18)
- 工具类(JAVA) (12)
- 工具类(JS) (2)
- 设计模式 (10)
- Lucene学习 (24)
- EJB3学习 (6)
- Sphinx搜索引擎 (3)
- 工作中用到的软件小工具 (5)
- .NET (49)
- JAVA 连接SQLSERVER2008步骤 (1)
- MongoDB (19)
- Android手机开发 (3)
- Maven (6)
- vue (9)
- Shiro (4)
- mybatis (3)
- netty框架 (1)
- SpringCloud (3)
- spring-cloud (7)
- Git (1)
- dubbo (2)
- springboot (13)
- rocketmq (1)
- git学习 (2)
- kafka服务器 (2)
- linux (10)
- WEB系统辅助项目 (1)
- jenkins (2)
- docker (4)
- influxdb (3)
- python (2)
- nginx (1)
最新评论
-
jiangfuofu555:
这样数据量大,效率怎么样?
sqlserver 实现分页的前台代码 以及后台的sqlserver语句 -
w156445045:
博主请问下,如何做到实时的刷新呢,
另外我后台是Java 谢谢 ...
web 版本的汽车仪表盘,非常好看。还有各种图形 -
jackyin5918:
<transportConnector name=&qu ...
ActiveMQ的activemq.xml详细配置讲解 -
握着橄榄枝的人:
你这个不是spring1.x的吧
spring1.x使用AOP实例 -
xiaophai:
全乱套了!
openfire+spark搭建完美的及时通讯
Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。
概述:
对于从事C、C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的皇帝又是执行最基础工作的劳动人民——拥有每一个对象的“所有权”,又担负着每一个对象生命开始到终结的维护责任。
对于Java程序员来说,不需要在为每一个new操作去写配对的delete/free,不容易出现内容泄漏和内存溢出错误,看起来由JVM管理内存一切都很美好。不过,也正是因为Java程序员把内存控制的权力交给了JVM,一旦出现泄漏和溢出,如果不了解JVM是怎样使用内存的,那排查错误将会是一件非常困难的事情。
VM运行时数据区域
JVM执行Java程序的过程中,会使用到各种数据区域,这些区域有各自的用途、创建和销毁时间。根据《Java虚拟机规范(第二版)》(下文称VM Spec)的规定,JVM包括下列几个运行时数据区域:
1.程序计数器(Program Counter Register):
每一个Java线程都有一个程序计数器来用于保存程序执行到当前方法的哪一个指令,对于非Native方法,这个区域记录的是正在执行的VM原语的地址,如果正在执行的是Natvie方法,这个区域则为空(undefined)。此内存区域是唯一一个在VM Spec中没有规定任何OutOfMemoryError情况的区域。
2.Java虚拟机栈(Java Virtual Machine Stacks)
与程序计数器一样,VM栈的生命周期也是与线程相同。VM栈描述的是Java方法调用的内存模型:每个方法被执行的时候,都会同时创建一个帧(Frame)用于存储本地变量表、操作栈、动态链接、方法出入口等信息。每一个方法的调用至完成,就意味着一个帧在VM栈中的入栈至出栈的过程。在后文中,我们将着重讨论VM栈中本地变量表部分。
经常有人把Java内存简单的区分为堆内存(Heap)和栈内存(Stack),实际中的区域远比这种观点复杂,这样划分只是说明与变量定义密切相关的内存区域是这两块。其中所指的“堆”后面会专门描述,而所指的“栈”就是VM栈中各个帧的本地变量表部分。本地变量表存放了编译期可知的各种标量类型(boolean、byte、char、short、int、float、long、double)、对象引用(不是对象本身,仅仅是一个引用指针)、方法返回地址等。其中long和double会占用2个本地变量空间(32bit),其余占用1个。本地变量表在进入方法时进行分配,当进入一个方法时,这个方法需要在帧中分配多大的本地变量是一件完全确定的事情,在方法运行期间不改变本地变量表的大小。
在VM Spec中对这个区域规定了2中异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果VM栈可以动态扩展(VM Spec中允许固定长度的VM栈),当扩展时无法申请到足够内存则抛出OutOfMemoryError异常。
3.本地方法栈(Native Method Stacks)
本地方法栈与VM栈所发挥作用是类似的,只不过VM栈为虚拟机运行VM原语服务,而本地方法栈是为虚拟机使用到的Native方法服务。它的实现的语言、方式与结构并没有强制规定,甚至有的虚拟机(譬如Sun Hotspot虚拟机)直接就把本地方法栈和VM栈合二为一。和VM栈一样,这个区域也会抛出StackOverflowError和OutOfMemoryError异常。
4.Java堆(Java Heap)
对于绝大多数应用来说,Java堆是虚拟机管理最大的一块内存。Java堆是被所有线程共享的,在虚拟机启动时创建。Java堆的唯一目的就是存放对象实例,绝大部分的对象实例都在这里分配。这一点在VM Spec中的描述是:所有的实例以及数组都在堆上分配(原文:The heap is the runtime data area from which memory for all class instances and arrays is allocated),但是在逃逸分析和标量替换优化技术出现后,VM Spec的描述就显得并不那么准确了。
Java堆内还有更细致的划分:新生代、老年代,再细致一点的:eden、from survivor、to survivor,甚至更细粒度的本地线程分配缓冲(TLAB)等,无论对Java堆如何划分,目的都是为了更好的回收内存,或者更快的分配内存,在本章中我们仅仅针对内存区域的作用进行讨论,Java堆中的上述各个区域的细节,可参见本文第二章《JVM内存管理:深入垃圾收集器与内存分配策略》。
根据VM Spec的要求,Java堆可以处于物理上不连续的内存空间,它逻辑上是连续的即可,就像我们的磁盘空间一样。实现时可以选择实现成固定大小的,也可以是可扩展的,不过当前所有商业的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。如果在堆中无法分配内存,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。
5.方法区(Method Area)
叫“方法区”可能认识它的人还不太多,如果叫永久代(Permanent Generation)它的粉丝也许就多了。它还有个别名叫做Non-Heap(非堆),但是VM Spec上则描述方法区为堆的一个逻辑部分(原文:the method area is logically part of the heap),这个名字的问题还真容易令人产生误解,我们在这里就不纠结了。
方法区中存放了每个Class的结构信息,包括常量池、字段描述、方法描述等等。VM Space描述中对这个区域的限制非常宽松,除了和Java堆一样不需要连续的内存,也可以选择固定大小或者可扩展外,甚至可以选择不实现垃圾收集。相对来说,垃圾收集行为在这个区域是相对比较少发生的,但并不是某些描述那样永久代不会发生GC(至少对当前主流的商业JVM实现来说是如此),这里的GC主要是对常量池的回收和对类的卸载,虽然回收的“成绩”一般也比较差强人意,尤其是类卸载,条件相当苛刻。
6.运行时常量池(Runtime Constant Pool)
Class文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量表(constant_pool table),用于存放编译期已可知的常量,这部分内容将在类加载后进入方法区(永久代)存放。但是Java语言并不要求常量一定只有编译期预置入Class的常量表的内容才能进入方法区常量池,运行期间也可将新内容放入常量池(最典型的String.intern()方法)。
运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法在申请到内存时会抛出OutOfMemoryError异常。
7.本机直接内存(Direct Memory)
直接内存并不是虚拟机运行时数据区的一部分,它根本就是本机内存而不是VM直接管理的区域。但是这部分内存也会导致OutOfMemoryError异常出现,因此我们放到这里一起描述。
在JDK1.4中新加入了NIO类,引入一种基于渠道与缓冲区的I/O方式,它可以通过本机Native函数库直接分配本机内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java对和本机堆中来回复制数据。
显然本机直接内存的分配不会受到Java堆大小的限制,但是即然是内存那肯定还是要受到本机物理内存(包括SWAP区或者Windows虚拟内存)的限制的,一般服务器管理员配置JVM参数时,会根据实际内存设置-Xmx等参数信息,但经常忽略掉直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),而导致动态扩展时出现OutOfMemoryError异常。
实战OutOfMemoryError
上述区域中,除了程序计数器,其他在VM Spec中都描述了产生OutOfMemoryError(下称OOM)的情形,那我们就实战模拟一下,通过几段简单的代码,令对应的区域产生OOM异常以便加深认识,同时初步介绍一些与内存相关的虚拟机参数。下文的代码都是基于Sun Hotspot虚拟机1.6版的实现,对于不同公司的不同版本的虚拟机,参数与程序运行结果可能结果会有所差别。
Java堆
Java堆存放的是对象实例,因此只要不断建立对象,并且保证GC Roots到对象之间有可达路径即可产生OOM异常。测试中限制Java堆大小为20M,不可扩展,通过参数-XX:+HeapDumpOnOutOfMemoryError让虚拟机在出现OOM异常的时候Dump出内存映像以便分析。(关于Dump映像文件分析方面的内容,可参见本文第三章《JVM内存管理:深入JVM内存异常分析与调优》。)
清单1:Java堆OOM测试
/** * VM Args:-Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError * @author zzm */ public class HeapOOM {
static class OOMObject { }
public static void main(String[] args) { List<OOMObject> list = new ArrayList<OOMObject>();
while (true) { list.add(new OOMObject()); } } } |
运行结果:
java.lang.OutOfMemoryError: Java heap space Dumping heap to java_pid3404.hprof ... Heap dump file created [22045981 bytes in 0.663 secs] |
VM栈和本地方法栈
Hotspot虚拟机并不区分VM栈和本地方法栈,因此-Xoss参数实际上是无效的,栈容量只由-Xss参数设定。关于VM栈和本地方法栈在VM Spec描述了两种异常:StackOverflowError与OutOfMemoryError,当栈空间无法继续分配分配时,到底是内存太小还是栈太大其实某种意义上是对同一件事情的两种描述而已,在笔者的实验中,对于单线程应用尝试下面3种方法均无法让虚拟机产生OOM,全部尝试结果都是获得SOF异常。
1.使用-Xss参数削减栈内存容量。结果:抛出SOF异常时的堆栈深度相应缩小。
2.定义大量的本地变量,增大此方法对应帧的长度。结果:抛出SOF异常时的堆栈深度相应缩小。
3.创建几个定义很多本地变量的复杂对象,打开逃逸分析和标量替换选项,使得JIT编译器允许对象拆分后在栈中分配。结果:实际效果同第二点。
清单2:VM栈和本地方法栈OOM测试(仅作为第1点测试程序)
/** * VM Args:-Xss128k * @author zzm */ public class JavaVMStackSOF {
private int stackLength = 1;
public void stackLeak() { stackLength++; stackLeak(); }
public static void main(String[] args) throws Throwable { JavaVMStackSOF oom = new JavaVMStackSOF(); try { oom.stackLeak(); } catch (Throwable e) { System.out.println("stack length:" + oom.stackLength); throw e; } } } |
运行结果:
stack length:2402 Exception in thread "main" java.lang.StackOverflowError at org.fenixsoft.oom.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:20) at org.fenixsoft.oom.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:21) at org.fenixsoft.oom.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:21) |
如果在多线程环境下,不断建立线程倒是可以产生OOM异常,但是基本上这个异常和VM栈空间够不够关系没有直接关系,甚至是给每个线程的VM栈分配的内存越多反而越容易产生这个OOM异常。
原因其实很好理解,操作系统分配给每个进程的内存是有限制的,譬如32位Windows限制为2G,Java堆和方法区的大小JVM有参数可以限制最大值,那剩余的内存为2G(操作系统限制)-Xmx(最大堆)-MaxPermSize(最大方法区),程序计数器消耗内存很小,可以忽略掉,那虚拟机进程本身耗费的内存不计算的话,剩下的内存就供每一个线程的VM栈和本地方法栈瓜分了,那自然每个线程中VM栈分配内存越多,就越容易把剩下的内存耗尽。
清单3:创建线程导致OOM异常
/** * VM Args:-Xss2M (这时候不妨设大些) * @author zzm */ public class JavaVMStackOOM {
private void dontStop() { while (true) { } }
public void stackLeakByThread() { while (true) { Thread thread = new Thread(new Runnable() { @Override public void run() { dontStop(); } }); thread.start(); } }
public static void main(String[] args) throws Throwable { JavaVMStackOOM oom = new JavaVMStackOOM(); oom.stackLeakByThread(); } } |
特别提示一下,如果读者要运行上面这段代码,记得要存盘当前工作,上述代码执行时有很大令操作系统卡死的风险。
运行结果:
Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread |
运行时常量池
要在常量池里添加内容,最简单的就是使用String.intern()这个Native方法。由于常量池分配在方法区内,我们只需要通过-XX:PermSize和-XX:MaxPermSize限制方法区大小即可限制常量池容量。实现代码如下:
清单4:运行时常量池导致的OOM异常
/** * VM Args:-XX:PermSize=10M -XX:MaxPermSize=10M * @author zzm */ public class RuntimeConstantPoolOOM {
public static void main(String[] args) { // 使用List保持着常量池引用,压制Full GC回收常量池行为 List<String> list = new ArrayList<String>(); // 10M的PermSize在integer范围内足够产生OOM了 int i = 0; while (true) { list.add(String.valueOf(i++).intern()); } } } |
运行结果:
Exception in thread "main" java.lang.OutOfMemoryError: PermGen space at java.lang.String.intern(Native Method) at org.fenixsoft.oom.RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java:18) |
方法区
上文讲过,方法区用于存放Class相关信息,所以这个区域的测试我们借助CGLib直接操作字节码动态生成大量的Class,值得注意的是,这里我们这个例子中模拟的场景其实经常会在实际应用中出现:当前很多主流框架,如Spring、Hibernate对类进行增强时,都会使用到CGLib这类字节码技术,当增强的类越多,就需要越大的方法区用于保证动态生成的Class可以加载入内存。
清单5:借助CGLib使得方法区出现OOM异常
/** * VM Args: -XX:PermSize=10M -XX:MaxPermSize=10M * @author zzm */ public class JavaMethodAreaOOM {
public static void main(String[] args) { while (true) { Enhancer enhancer = new Enhancer(); enhancer.setSuperclass(OOMObject.class); enhancer.setUseCache(false); enhancer.setCallback(new MethodInterceptor() { public Object intercept(Object obj, Method method, Object[] args, MethodProxy proxy) throws Throwable { return proxy.invokeSuper(obj, args); } }); enhancer.create(); } }
static class OOMObject {
} } |
运行结果:
Caused by: java.lang.OutOfMemoryError: PermGen space at java.lang.ClassLoader.defineClass1(Native Method) at java.lang.ClassLoader.defineClassCond(ClassLoader.java:632) at java.lang.ClassLoader.defineClass(ClassLoader.java:616) ... 8 more |
本机直接内存
DirectMemory容量可通过-XX:MaxDirectMemorySize指定,不指定的话默认与Java堆(-Xmx指定)一样,下文代码越过了DirectByteBuffer,直接通过反射获取Unsafe实例进行内存分配(Unsafe类的getUnsafe()方法限制了只有引导类加载器才会返回实例,也就是基本上只有rt.jar里面的类的才能使用),因为DirectByteBuffer也会抛OOM异常,但抛出异常时实际上并没有真正向操作系统申请分配内存,而是通过计算得知无法分配既会抛出,真正申请分配的方法是unsafe.allocateMemory()。
/** * VM Args:-Xmx20M -XX:MaxDirectMemorySize=10M * @author zzm */ public class DirectMemoryOOM {
private static final int _1MB = 1024 * 1024;
public static void main(String[] args) throws Exception { Field unsafeField = Unsafe.class.getDeclaredFields()[0]; unsafeField.setAccessible(true); Unsafe unsafe = (Unsafe) unsafeField.get(null); while (true) { unsafe.allocateMemory(_1MB); } } } |
运行结果:
Exception in thread "main" java.lang.OutOfMemoryError at sun.misc.Unsafe.allocateMemory(Native Method) at org.fenixsoft.oom.DirectMemoryOOM.main(DirectMemoryOOM.java:20) |
总结
到此为止,我们弄清楚虚拟机里面的内存是如何划分的,哪部分区域,什么样的代码、操作可能导致OOM异常。虽然Java有垃圾收集机制,但OOM仍然离我们并不遥远,本章内容我们只是知道各个区域OOM异常出现的原因,下一章我们将看看Java垃圾收集机制为了避免OOM异常出现,做出了什么样的努力。
发表评论
-
JVM调优总结
2019-07-10 17:14 367https://www.cnblogs.com/andy-zh ... -
JAVA RESULTSET 使用详解
2012-03-20 21:01 3151调用ResultSet中的last()方法时,提示: java ... -
JAVA采用JDBC执行批处理操作注意的问题
2012-03-20 20:50 1970让我们看看如何使用JDBC API在Java中执行批量插入。虽 ... -
java 各种加密算法详细比较
2012-03-15 11:07 2288本篇内容简要介绍BASE64、MD5、SHA、HMAC几种加密 ... -
java:大数据文件写入,读取,分割,排序,合并
2012-03-05 20:21 2026/** * 大数据排序合并 * * @param ar ... -
JAVA 连接池,方便在平时使用
2012-02-21 15:03 1026java连接池使用 -
Java动态代理实现
2012-02-28 09:19 995Java动态代理实现 在目前的Java开发包中包含 ... -
Java Socket实战之五 使用加密协议传输对象
2012-02-16 13:49 1119本文地址:http://blog.csdn.net/kongx ... -
Java Socket实战之四 传输压缩对象
2012-02-16 13:48 1006转载:http://blog.csdn.net/kongxx/ ... -
Java Socket实战之三 传输对象
2012-02-16 13:48 675转载:http://blog.csdn.net/kongxx/ ... -
Java Socket实战之二 多线程通信
2012-02-16 13:47 1145本文地址:http://blog.csdn.net/kongx ... -
Java Socket实战之一 单线程通信
2012-02-16 13:46 1017转载:http://blog.csdn.net/kongx ... -
java5 新增线程池的使用
2012-02-09 09:26 1150package net.itdos.concurrent; ... -
P2P之UDP穿透NAT的原理与实现
2012-01-11 11:03 1247关键词: P2P UDP NAT 原理 穿透 Traveral ... -
火车票网上订票软件
2012-01-11 09:05 1905JAVA程序GOHOME自动抢票成功!非常棒~~~不多说,直接 ... -
java tcp/ip 通讯服务端和客户端
2011-12-15 08:20 1348java tcp/ip 通讯服务端和客户端 -
java 读取服务器上的某个文件,并解决UTF-8 BOM文件的问号问题
2011-11-28 15:16 1418JAVA读取UTF-8 BOM文件的时候会在文件头产生一个?号 ... -
JAVA 多线程学习笔记
2011-10-12 09:03 1060JAVA 多线程学习笔记 -
XBlink 1.0.0版发布,更轻、更快、更好用
2011-10-09 14:47 1309XBlink 1.0.0版发布,更轻、更快、更好用。 ... -
db4o 文件整理(收缩)
2011-09-29 22:26 1468一直都不敢大胆使用db4o,不是因为它不好用,不稳定,而 ...
相关推荐
通过对Java内存管理机制的深入分析,我们可以了解到Java如何高效地管理和利用内存资源。理解这些机制对于优化Java应用程序的性能至关重要,特别是在处理大规模数据集或多线程环境时。此外,合理配置JVM参数和选择...
资源名称:Java内存管理机制相关资料汇总资源目录:【】java内存回收机制及预防【】java内存管理机制【】java内存管理白皮书【】Java虚拟机内存管理_对象和引用_空指针【】深入理解java虚拟机jvm高级行与最佳实践...
Java内存管理是Java编程中的核心概念,它涉及到程序运行时数据的存储、分配以及回收。在Java中,内存主要分为堆内存(Heap)和栈内存(Stack),还有方法区(Method Area)、程序计数器(PC Register)以及本地方法...
Java内存管理是Java编程中至关重要的一环,它与C++等其他语言的内存管理机制有着显著的区别。在C++中,程序员需要手动管理内存,包括分配和释放,而在Java中,这一过程则由Java虚拟机(JVM)自动进行,通过垃圾收集...
Java内存管理是Java核心技术的重要组成部分,对于每个开发者来说,理解其工作原理都是十分必要的。这一主题既实用又有趣。以下是对Java内存管理的精彩概述,主要基于Sun Hotspot JVM,但请注意,不同JVM可能有不同的...
在Windows操作系统中,内存管理是一个非常重要的方面。Windows实现按需调页的虚拟内存机制,使得应用程序可以使用超过物理内存容量的虚拟内存。此外,Windows还使用了页面文件来扩展物理内存的容量。 在Java中,...
为了优化内存管理,Java采用了垃圾回收机制(Garbage Collection),自动回收不再使用的对象,以避免内存泄漏。 2. **Method Area(方法区)**:又称为非堆区或永久代,在这里存储的是类和接口的元数据,包括类的...
总的来说,Java内存管理和诊断是一个复杂的过程,需要深入理解JVM的工作原理和垃圾收集机制。通过合理使用各种工具和技巧,开发者能够有效地识别和解决内存泄露和溢出问题,确保应用程序的稳定性和性能。
Java内存管理是Java编程中的核心概念,它涉及到程序运行时如何高效地分配、使用和回收内存。在Java中,内存管理主要由JVM(Java Virtual Machine)负责,其中包括了垃圾收集机制,确保程序不会因为内存泄漏而导致...
内存管理简介 内存管理的职责为分配内存,回收内存。 没有自动内存管理的语言/平台容易发生错误。 典型的问题包括悬挂指针问题,一个指针引用了一个已经被回收的内存地址,导致程序的运行完全不可知。 另一个...
Java内存管理是Java编程中至关重要的一环,它涉及到程序的性能和稳定性。本文将深入探讨Java内存管理机制,包括垃圾回收、内存分配与释放、内存泄漏及其预防措施,以及四种引用类型的特点和应用场景。 首先,Java...
"JAVA内存管理模式研究" 在 Java 编程语言中,内存管理是非常关键的机制之一。 Java 虚拟机(JVM)通过对内存的分配和回收来管理内存资源。 本文将详细介绍 Java 的内存管理模式,包括内存区域、内存分配策略、垃圾...
Java 中的内存管理机制是自动的,开发者不需要手动释放内存,但是这也使得 Java 程序占用内存相对较高。为了避免内存泄露,开发者需要注意在编写程序时,合理地使用内存资源。 Java 内存原理的优点: * 自动内存...
### 如何解决Java内存泄漏 #### 1. 背景 Java凭借其垃圾回收机制大大简化了内存管理,使得开发者无需手动管理内存的释放,从而提升了开发效率。然而,这种自动化管理也可能成为一把双刃剑,特别是当开发人员忽视...
Java内存管理是编程中至关重要的一个环节,尤其是对于大型、长时间运行的应用来说,内存泄漏和内存无法回收可能导致系统性能下降,甚至导致系统崩溃。本文将深入探讨Java内存泄露的原理,分析内存无法回收的原因,并...
总结来看,Java内存管理是一个包含多个组件和层次的复杂系统,涉及到垃圾收集器的选择、配置以及监控等多个方面。通过本文的介绍和分析,开发者可以更深入地理解Java虚拟机中的内存管理机制,合理地选择和配置垃圾...
Java虚拟机内存管理总结 Java虚拟机(JVM)中的内存管理是指Java语言中对象的分配和释放问题。Java中的内存管理可以分为两部分:对象的分配和释放。 对象的分配是由程序完成的,程序员需要通过关键字new为每个对象...