`
ihuashao
  • 浏览: 4721725 次
  • 性别: Icon_minigender_1
  • 来自: 济南
社区版块
存档分类
最新评论

Which Numbers are the Sum of Two Squares?

阅读更多
The main goal of today's lecture is to prove the following theorem.

Theorem 1.1 A number$ n$ is a sum of two squares if and only if all prime factors of$ n$ of the form $ 4m+3$ have even exponent in the prime factorization of$ n$.

Before tackling a proof, we consider a few examples.

Example 1.2

  • <!-- MATH $5 = 1^2 + 2^2$ -->$ 5 = 1^2 + 2^2$.
  • $ 7$ is not a sum of two squares.
  • $ 2001$ is divisible by $ 3$ because $ 2+1$ is, but not by $ 9$ since $ 2+1$ is not, so $ 2001$ is not a sum of two squares.
  • <!-- MATH $2\cdot 3^4\cdot 5\cdot 7^2\cdot 13$ -->$ 2\cdot 3^4\cdot 5\cdot 7^2\cdot 13$ is a sum of two squares.
  • $ 389$ is a sum of two squares, since <!-- MATH $389\equiv 1\pmod{4}$ -->$ 389\equiv 1\pmod{4}$ and $ 389$ is prime.
  • <!-- MATH $21=3\cdot 7$ -->$ 21=3\cdot 7$ is not a sum of two squares even though <!-- MATH $21\equiv 1\pmod{4}$ -->$ 21\equiv 1\pmod{4}$.

In preparation for the proof of Theorem1.1, we recall a result that emerged when we analyzed how partial convergents of a continued fraction converge.

Lemma 1.3 If <!-- MATH $x\in\mathbb{R}$ -->$ x\in\mathbb{R}$ and <!-- MATH $n\in\mathbb{N}$ -->$ n\in\mathbb{N}$, then there is a fraction <!-- MATH $\displaystyle \frac{a}{b}$ -->$ \displaystyle \frac{a}{b}$ in lowest terms such that $ 0<b\leq n$ and <!-- MATH \begin{displaymath} \left| x - \frac{a}{b} \right| \leq \frac{1}{b(n+1)}. \end{displaymath} -->

$\displaystyle \left\vert x - \frac{a}{b} \right\vert \leq \frac{1}{b(n+1)}.$

Proof. Let <!-- MATH $[a_0,a_1,\ldots]$ -->$ [a_0,a_1,\ldots]$ be the continued fraction expansion of$ x$. As we saw in the proof of Theorem2.3 in Lecture18, for each$ m$<!-- MATH \begin{displaymath} \left| x - \frac{p_m}{q_m}\right| < \frac{1}{q_m \cdot q_{m+1}}. \end{displaymath} -->

$\displaystyle \left\vert x - \frac{p_m}{q_m}\right\vert
< \frac{1}{q_m \cdot q_{m+1}}.
$

Since $ q_{m+1}$ is always at least$ 1$ bigger than $ q_m$ and $ q_0=1$, either there exists an$ m$ such that <!-- MATH $q_m\leq n < q_{m+1}$ -->$ q_m\leq n < q_{m+1}$, or the continued fraction expansion of$ x$ is finite and $ n$ is larger than the denominator of the rational number$ x$. In the first case, <!-- MATH \begin{displaymath} \left| x - \frac{p_m}{q_m}\right| < \frac{1}{q_m \cdot q_{m+1}} \leq \frac{1}{q_m \cdot (n+1)}, \end{displaymath} -->

$\displaystyle \left\vert x - \frac{p_m}{q_m}\right\vert
< \frac{1}{q_m \cdot q_{m+1}}
\leq \frac{1}{q_m \cdot (n+1)},$

so <!-- MATH $\displaystyle \frac{a}{b} = \frac{p_m}{q_m}$ -->$ \displaystyle \frac{a}{b} = \frac{p_m}{q_m}$ satisfies the conclusion of the lemma. In the second case, just let <!-- MATH $\displaystyle \frac{a}{b} = x$ -->$ \displaystyle \frac{a}{b} = x$.

$ \qedsymbol$

Definition 1.4 A representation <!-- MATH $n=x^2 + y^2$ -->$ n=x^2 + y^2$ is primitive if <!-- MATH $\gcd(x,y)=1$ -->$ \gcd(x,y)=1$.

Lemma 1.5 If$ n$ is divisible by a prime$ p$ of the form $ 4m+3$, then$ n$ has no primitive representations.

Proof. If$ n$ has a primitive representation, <!-- MATH $n=x^2 + y^2$ -->$ n=x^2 + y^2$, then <!-- MATH \begin{displaymath} p \mid x^2 + y^2\quad \text{ and }\quad \gcd(x,y)=1, \end{displaymath} -->

$\displaystyle p \mid x^2 + y^2$ and $\displaystyle \quad \gcd(x,y)=1,
$

so $ p\nmid x$ and $ p\nmid y$. Thus <!-- MATH $x^2 + y^2 \equiv 0\pmod{p}$ -->$ x^2 + y^2 \equiv 0\pmod{p}$ so, since <!-- MATH $\mathbb{Z}/p\mathbb{Z}$ -->$ \mathbb{Z}/p\mathbb{Z}$ is a field we can divide by $ y^2$ and see that <!-- MATH \begin{displaymath} (x/y)^2 \equiv -1\pmod{p}. \end{displaymath} -->

$\displaystyle (x/y)^2 \equiv -1\pmod{p}.
$

Thus the quadratic residue symbol <!-- MATH $\left(\frac{-1}{p}\right)$ -->$ \left(\frac{-1}{p}\right)$ equals $ +1$. However, <!-- MATH \begin{displaymath} \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^\frac{4m+3-1}{2} = (-1)^{2m+1} = -1. \end{displaymath} -->

$\displaystyle \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^\frac{4m+3-1}{2} = (-1)^{2m+1} = -1.
$

$ \qedsymbol$

Proof. [Proof of Theorem1.1] <!-- MATH $\left(\Longrightarrow\right)$ -->$ \left(\Longrightarrow\right)$ Suppose that$ p$ is of the form $ 4m+3$, that <!-- MATH $p^r\mid\mid n$ -->$ p^r\mid\mid n$ (exactly divides) with$ r$ odd, and that $ n=x^2 + y^2$. Letting <!-- MATH $d=\gcd(x,y)$ -->$ d=\gcd(x,y)$, we have <!-- MATH \begin{displaymath} x = dx', \quad y = dy', \quad n = d^2 n' \end{displaymath} -->

$\displaystyle x = dx', \quad y = dy', \quad n = d^2 n'
$

with <!-- MATH $\gcd(x',y')=1$ -->$ \gcd(x',y')=1$ and <!-- MATH \begin{displaymath} (x')^2 + (y')^2 = n'. \end{displaymath} -->

$\displaystyle (x')^2 + (y')^2 = n'.
$

Because$ r$ is odd, $ p\mid n'$, so Lemma1.5 implies that <!-- MATH $\gcd(x',y')>1$ -->$ \gcd(x',y')>1$, a contradiction.

<!-- MATH $\left(\Longleftarrow\right)$ -->$ \left(\Longleftarrow\right)$ Write <!-- MATH $n=n_1^2 n_2$ -->$ n=n_1^2 n_2$ where $ n_2$ has no prime factors of the form $ 4m+3$. It suffices to show that$ n_2$ is a sum of two squares. Also note that <!-- MATH \begin{displaymath} (x_1^2 + y_1^2)(x_2^2+y_2^2) = (x_1x_2+y_1y_2)^2 + (x_1y_2-x_2y_1)^2, \end{displaymath} -->

$\displaystyle (x_1^2 + y_1^2)(x_2^2+y_2^2) = (x_1x_2+y_1y_2)^2 + (x_1y_2-x_2y_1)^2,
$

so a product of two numbers that are sums of two squares is also a sum of two squares.1Also, the prime$ 2$ is a sum of two squares. It thus suffices to show that if$ p$ is a prime of the form $ 4m+1$, then$ p$ is a sum of two squares.

Since <!-- MATH \begin{displaymath} (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4m+1-1}{2}} = +1, \end{displaymath} -->

$\displaystyle (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4m+1-1}{2}} = +1,
$

$ -1$ is a square modulo$ p$; i.e., there exists$ r$ such that <!-- MATH $r^2\equiv -1\pmod{p}$ -->$ r^2\equiv -1\pmod{p}$. Taking <!-- MATH $n=\lfloor \sqrt{p}\rfloor$ -->$ n=\lfloor \sqrt{p}\rfloor$ in Lemma1.3 we see that there are integers $ a, b$ such that <!-- MATH $0<b<\sqrt{p}$ -->$ 0<b<\sqrt{p}$ and <!-- MATH \begin{displaymath} \left| -\frac{r}{p} - \frac{a}{b}\right| \leq\frac{1}{b(n+1)} < \frac{1}{b\sqrt{p}}. \end{displaymath} -->

$\displaystyle \left\vert -\frac{r}{p} - \frac{a}{b}\right\vert \leq\frac{1}{b(n+1)} < \frac{1}{b\sqrt{p}}.
$

If we write <!-- MATH \begin{displaymath} c = rb + pa \end{displaymath} -->

$\displaystyle c = rb + pa
$

then <!-- MATH \begin{displaymath} |c| < \frac{pb}{b\sqrt{p}} = \frac{p}{\sqrt{p}} = \sqrt{p} \end{displaymath} -->

$\displaystyle \vert c\vert < \frac{pb}{b\sqrt{p}} = \frac{p}{\sqrt{p}} = \sqrt{p}
$

and <!-- MATH \begin{displaymath} 0 < b^2 + c^2 < 2p. \end{displaymath} -->

$\displaystyle 0 < b^2 + c^2 < 2p.
$

But <!-- MATH $c \equiv rb\pmod{p}$ -->$ c \equiv rb\pmod{p}$, so <!-- MATH \begin{displaymath} b^2 + c^2 \equiv b^2 + r^2 b^2 \equiv b^2(1+r^2) \equiv 0\pmod{p}. \end{displaymath} -->

$\displaystyle b^2 + c^2 \equiv b^2 + r^2 b^2 \equiv b^2(1+r^2) \equiv 0\pmod{p}.
$

Thus <!-- MATH $b^2 + c^2 = p$ -->$ b^2 + c^2 = p$.
分享到:
评论

相关推荐

    A SYNTHESIS OF RECENT ADVANCES IN THE METHOD OF LEAST SQUARES

    In order to make our extensive series of lecture notes more readily ... The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

    Least-squares estimation of transformation parameters between tw

    Least-squares estimation of transformation parameters between two point patterns。 相似变换相当于等距变换和均匀缩放的一个复合,即为: 左上角2*2矩阵为旋转部分,右上角为平移因子。它有四个自由度,即旋转...

    SumOfSquares.jl:Julia的平方和编程

    《SumOfSquares.jl:Julia语言的平方和编程详解》 在计算机科学和数学领域,优化问题占据了核心地位,而SumOfSquares(SOS)编程是解决这类问题的一种强大工具。SumOfSquares.jl是用Julia语言实现的库,专门用于...

    A contribution to the condition number of the total least squares problem

    关于总体最小二乘问题(Total Least Squares Problem, TLS)的条件数的研究,是中国学者贾仲孝和李冰玉所著的科研成果。总体最小二乘问题是一种数学优化问题,其在处理带有误差的数据时,比传统的最小二乘问题...

    Corn Fields

    Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing ...

    the total least squares problem computational aspect and analysis

    整体最小二乘问题(The Total Least Squares Problem)是统计学与数值分析领域中的一个重要概念,尤其是在处理具有误差的数据集时尤为关键。本文将基于提供的标题、描述、标签以及部分内容,深入探讨整体最小二乘的...

    Simple World

    The simple world program simulates a number of creatures running around in a simple square world The world is an m by n two dimensional grid of squares The number m represents the height of the grid ...

    What are the differences between least-squares and Kalman filtering

    在GPS导航系统和其他位置定位技术中,两种最常用的估计方法是最小二乘法(Least Squares, LS)和卡尔曼滤波(Kalman Filtering, KF)。这两种方法虽然表面上看起来有很大区别,但实际上它们之间的差异并不像人们初次...

    PARTIAL LEAST SQUARES ANALYSIS

    Partial Least Squares (PLS) Analysis was first developed in the late 60’s by Herman Wold, and works on the assumption that the focus of analysis is on which aspects of the signal in one matrix are ...

    sst3_squaresmatrix_exchangeoi3_totalsum_TheGiven_

    描述中的关键词"computes the total sum of squares matrix on given features"揭示了该函数的核心操作。在统计学中,总平方和(Total Sum of Squares, TSS)矩阵通常用于分解因变量的总变异性,它反映了所有观测值...

    LEAST SQUARES SUPPORT VECTOR MACHINES

    This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but ...

    An Introduction to Least Median of Squares

    最小中值二乘(Least Median of Squares,简称LMS)是一种用于估计回归模型参数的稳健统计方法。该方法特别适用于数据集中存在异常值(离群点)时,仍能保持较好的回归性能,是传统最小二乘法(Ordinary Least ...

    深入java虚拟机(inside the java virtual machine)

    Circle of Squares: A Simulation On the CD-ROM The Resources Page 15 Objects and Arrays A Refresher on Objects and Arrays Opcodes for Objects Opcodes for Arrays Three-Dimensional Array: A ...

    Linear Algebra and Its Applications Fourth Edition by Gilbert Strang 带目录书签

    A.2 The Sum of Two Vector Spaces 460 A.3 The Cartesian Product of Two Vector Spaces 461 A.4 The Tensor Product of Two Vector Spaces 461 A.5 The Kronecker Product A­B of Two Matrices 462 B The Jordan ...

    Fundamentals of Kalman Filtering A Practical Approach, Third Edition+代码.zip

    The third edition has three new chapters on unusual topics related to Kalman filtering and other filtering techniques based on the method of least squares.Chapter 17 presents a type of filter known as...

Global site tag (gtag.js) - Google Analytics