- 浏览: 84002 次
- 性别:
- 来自: 北京
文章分类
最新评论
<?php /** * Flexihash - A simple consistent hashing implementation for PHP. * * The MIT License * * Copyright (c) 2008 Paul Annesley * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the “Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED “AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * @author Paul Annesley * @link http://paul.annesley.cc/ * @copyright Paul Annesley, 2008 */ /** * A simple consistent hashing implementation with pluggable hash algorithms. * * @author Paul Annesley * @package Flexihash * @licence http://www.opensource.org/licenses/mit-license.php */ class Flexihash { /** * The number of positions to hash each target to. * * @var int * @comment 虚拟节点数,解决节点分布不均的问题 */ private $_replicas = 64; /** * The hash algorithm, encapsulated in a Flexihash_Hasher implementation. * @var object Flexihash_Hasher * @comment 使用的hash方法 : md5,crc32 */ private $_hasher; /** * Internal counter for current number of targets. * @var int * @comment 节点记数器 */ private $_targetCount = 0; /** * Internal map of positions (hash outputs) to targets * @var array { position => target, … } * @comment 位置对应节点,用于lookup中根据位置确定要访问的节点 */ private $_positionToTarget = array(); /** * Internal map of targets to lists of positions that target is hashed to. * @var array { target => [ position, position, ... ], … } * @comment 节点对应位置,用于删除节点 */ private $_targetToPositions = array(); /** * Whether the internal map of positions to targets is already sorted. * @var boolean * @comment 是否已排序 */ private $_positionToTargetSorted = false; /** * Constructor * @param object $hasher Flexihash_Hasher * @param int $replicas Amount of positions to hash each target to. * @comment 构造函数,确定要使用的hash方法和需拟节点数,虚拟节点数越多,分布越均匀,但程序的分布式运算越慢 */ public function __construct(Flexihash_Hasher $hasher = null, $replicas = null) { $this->_hasher = $hasher ? $hasher : new Flexihash_Crc32Hasher(); if (!empty($replicas)) $this->_replicas = $replicas; } /** * Add a target. * @param string $target * @chainable * @comment 添加节点,根据虚拟节点数,将节点分布到多个虚拟位置上 */ public function addTarget($target) { if (isset($this->_targetToPositions[$target])) { throw new Flexihash_Exception("Target '$target' already exists."); } $this->_targetToPositions[$target] = array(); // hash the target into multiple positions for ($i = 0; $i < $this->_replicas; $i++) { $position = $this->_hasher->hash($target . $i); $this->_positionToTarget[$position] = $target; // lookup $this->_targetToPositions[$target] []= $position; // target removal } $this->_positionToTargetSorted = false; $this->_targetCount++; return $this; } /** * Add a list of targets. * @param array $targets * @chainable */ public function addTargets($targets) { foreach ($targets as $target) { $this->addTarget($target); } return $this; } /** * Remove a target. * @param string $target * @chainable */ public function removeTarget($target) { if (!isset($this->_targetToPositions[$target])) { throw new Flexihash_Exception("Target '$target' does not exist."); } foreach ($this->_targetToPositions[$target] as $position) { unset($this->_positionToTarget[$position]); } unset($this->_targetToPositions[$target]); $this->_targetCount--; return $this; } /** * A list of all potential targets * @return array */ public function getAllTargets() { return array_keys($this->_targetToPositions); } /** * Looks up the target for the given resource. * @param string $resource * @return string */ public function lookup($resource) { $targets = $this->lookupList($resource, 1); if (empty($targets)) throw new Flexihash_Exception('No targets exist'); return $targets[0]; } /** * Get a list of targets for the resource, in order of precedence. * Up to $requestedCount targets are returned, less if there are fewer in total. * * @param string $resource * @param int $requestedCount The length of the list to return * @return array List of targets * @comment 查找当前的资源对应的节点, * 节点为空则返回空,节点只有一个则返回该节点, * 对当前资源进行hash,对所有的位置进行排序,在有序的位置列上寻找当前资源的位置 * 当全部没有找到的时候,将资源的位置确定为有序位置的第一个(形成一个环) * 返回所找到的节点 */ public function lookupList($resource, $requestedCount) { if (!$requestedCount) throw new Flexihash_Exception('Invalid count requested'); // handle no targets if (empty($this->_positionToTarget)) return array(); // optimize single target if ($this->_targetCount == 1) return array_unique(array_values($this->_positionToTarget)); // hash resource to a position $resourcePosition = $this->_hasher->hash($resource); $results = array(); $collect = false; $this->_sortPositionTargets(); // search values above the resourcePosition foreach ($this->_positionToTarget as $key => $value) { // start collecting targets after passing resource position if (!$collect && $key > $resourcePosition) { $collect = true; } // only collect the first instance of any target if ($collect && !in_array($value, $results)) { $results []= $value; } // return when enough results, or list exhausted if (count($results) == $requestedCount || count($results) == $this->_targetCount) { return $results; } } // loop to start - search values below the resourcePosition foreach ($this->_positionToTarget as $key => $value) { if (!in_array($value, $results)) { $results []= $value; } // return when enough results, or list exhausted if (count($results) == $requestedCount || count($results) == $this->_targetCount) { return $results; } } // return results after iterating through both “parts" return $results; } public function __toString() { return sprintf( '%s{targets:[%s]}', get_class($this), implode(',', $this->getAllTargets()) ); } // —————————————- // private methods /** * Sorts the internal mapping (positions to targets) by position */ private function _sortPositionTargets() { // sort by key (position) if not already if (!$this->_positionToTargetSorted) { ksort($this->_positionToTarget, SORT_REGULAR); $this->_positionToTargetSorted = true; } } } /** * Hashes given values into a sortable fixed size address space. * * @author Paul Annesley * @package Flexihash * @licence http://www.opensource.org/licenses/mit-license.php */ interface Flexihash_Hasher { /** * Hashes the given string into a 32bit address space. * * Note that the output may be more than 32bits of raw data, for example * hexidecimal characters representing a 32bit value. * * The data must have 0xFFFFFFFF possible values, and be sortable by * PHP sort functions using SORT_REGULAR. * * @param string * @return mixed A sortable format with 0xFFFFFFFF possible values */ public function hash($string); } /** * Uses CRC32 to hash a value into a signed 32bit int address space. * Under 32bit PHP this (safely) overflows into negatives ints. * * @author Paul Annesley * @package Flexihash * @licence http://www.opensource.org/licenses/mit-license.php */ class Flexihash_Crc32Hasher implements Flexihash_Hasher { /* (non-phpdoc) * @see Flexihash_Hasher::hash() */ public function hash($string) { return crc32($string); } } /** * Uses CRC32 to hash a value into a 32bit binary string data address space. * * @author Paul Annesley * @package Flexihash * @licence http://www.opensource.org/licenses/mit-license.php */ class Flexihash_Md5Hasher implements Flexihash_Hasher { /* (non-phpdoc) * @see Flexihash_Hasher::hash() */ public function hash($string) { return substr(md5($string), 0, 8); // 8 hexits = 32bit // 4 bytes of binary md5 data could also be used, but // performance seems to be the same. } } /** * An exception thrown by Flexihash. * * @author Paul Annesley * @package Flexihash * @licence http://www.opensource.org/licenses/mit-license.php */ class Flexihash_Exception extends Exception { } ?>
发表评论
-
php 引用传递、引用返回和取消引用以及unset
2011-11-06 15:23 3161原文出处:http://hi.baidu.com/kashif ... -
php加速 PHP APC 浅析
2011-10-11 00:02 1209原文出自:http://www.perfgeeks.co ... -
CentOS源码安装Apache+PHP+MySQL
2011-05-20 23:18 25831.安装Apache CentOS源码安装Apache2 ... -
php命令行程序中让用户进行输入
2011-04-13 14:27 976<?php if(!defined("STD ... -
改自QeePHP的开发框架
2011-04-02 12:44 1192QeePHP是一个很不错的PHP开源框架。之前在小公司一直使用 ... -
session过期时间过长引发的性能问题
2011-02-24 11:42 1996同样的程序,连接同一个数据库,但测试服务器上比我本机要跑得慢, ... -
php正则表达式验证中文
2011-02-18 18:28 9201./^[\x{4e00}-\x{9fa5}]+$/u 2./ ... -
丢失的一小时
2010-12-18 20:25 1049同样的时间段,在不同的时区下,转换成秒以后居然会不相等。 d ...
相关推荐
在分布式系统中,常常需要使用缓存,而且通常是集群,访问缓存和添加缓存都需要一个 hash 算法来寻找到合适的 Cache 节点。但,通常不是用取余hash,而是使用我们今天的主角—— 一致性 hash 算法。
一致性哈希算法(Consistent Hashing)是一种在分布式系统中实现负载均衡的算法,尤其在分布式缓存如Memcached和Redis等场景下广泛使用。它解决了传统哈希算法在节点增减时导致的大量数据迁移问题,提高了系统的可用...
总之,`ConsistentHashing`是一个用于Python的工具,它实现了高效的一致性哈希算法,有助于构建稳定、可扩展的分布式系统。对于处理大数据量、高并发场景以及需要动态扩展的系统,这个库是十分实用的。
总的来说,一致性哈希算法通过环形空间和虚拟节点的设计,实现了在动态调整系统规模时,尽可能少地改变已分配的对象,提高了系统的扩展性和可用性。随着节点数量的增加,一致性哈希能够保持较高的缓存命中率,减轻对...
一致性哈希算法(Consistent Hashing)是一种在分布式系统中平衡数据分布的策略,尤其适用于缓存服务如Memcached或Redis。它的核心思想是通过哈希函数将对象映射到一个固定大小的环形空间中,然后将服务器也映射到这个...
一致性哈希算法
一致性哈希(Consistent Hashing)是一种特殊的哈希算法,它在分布式缓存和负载均衡等场景中被广泛应用。它通过将数据和服务器节点映射到一个哈希环上,提供了一种在节点增减时能够最小化数据重新分配的机制。本文将...
一致性哈希算法的工作流程如下: 1. 所有节点(包括服务器和数据)被哈希成一个唯一的值,并映射到一个闭合的哈希环上。 2. 当查找一个数据的存储位置时,同样对数据的键进行哈希,然后在哈希环上找到该键对应的点。...
一致性哈希算法(Consistent Hashing)是一种常用于分布式系统中的数据分片策略,它有效地解决了数据在多台服务器间均匀分布的问题,同时减少了因节点加入或离开时的数据迁移成本。 首先,一致性哈希的基本原理是将...
“ConsistentHashingandRandomTrees: Distributed Caching Protocols for Relieving Hot Spots on the Worldwide Web”指的是由David Karger等人撰写的关于一致性哈希算法(Consistent Hashing)以及如何运用该算法...
一致性哈希算法(Consistent Hashing)是一种特殊的哈希算法,设计目的是为了在分布式缓存系统中解决节点动态增减时导致的数据分布不均问题。该算法最早在1997年的论文《Consistent Hashing and Random Trees》中被...
一致性哈希算法(Consistent Hashing)是一种特殊的哈希算法,设计目的是为了在分布式缓存系统中解决节点动态增减时导致的键值映射大量变更的问题。它最早在1997年的论文《Consistent hashing and random trees》中被...
1. **哈希函数选择**:一致性哈希算法中的哈希函数需确保在整个哈希空间中分布均匀,避免热点现象。可以使用MD5或SHA系列函数进行哈希。 2. **虚拟节点机制**:为了解决实际节点数量较少导致的数据不平衡问题,一致...
在这个Java实现中,我们看到的是Ketama一致性哈希算法,这是一种在实践中广泛应用的一致性哈希变体。 Ketama一致性哈希算法由Last.fm的工程师开发,其设计目标是优化分布式哈希表的性能,特别是在处理大量小键值对...
一致性哈希(Consistent Hashing)是一种分布式哈希表(DHT)的算法,它主要应用于分布式缓存、负载均衡等场景,旨在解决在动态扩展或收缩系统规模时,尽量减少数据迁移的问题。在这个简单的实现中,我们将探讨如何...