- 浏览: 239231 次
- 性别:
- 来自: 湖南
最新评论
-
yuxuejun1123:
为什么没有powerPC,个人觉得这篇文章把mips和powe ...
ARM MIPS PowerPC比较 -
yy232:
我刚学这个,有点疑问,希望你能为我解答 你说 “任何人只 ...
centos的用户、组权限、添加删除用户等操作的详细操作命令 -
wstxdz1023:
就那么几句代码,全是问题
socket 心跳
第一部分 Binder的组成
1.1 驱动程序部分驱动程序的部分在以下的文件夹中:
kernel/include/linux/binder.h
kernel/drivers/android/binder.c
binder驱动程序是一个miscdevice,主设备号为10,此设备号使用动态获得(MISC_DYNAMIC_MINOR),其设备的节点为:
/dev/binder
binder驱动程序会在proc文件系统中建立自己的信息,其文件夹为/proc/binde,其中包含如下内容:
proc目录:调用Binder各个进程的内容
state文件:使用函数binder_read_proc_state
stats文件:使用函数binder_read_proc_stats
transactions文件:使用函数binder_read_proc_transactions
transaction_log文件:使用函数binder_read_proc_transaction_log,其参数为binder_transaction_log (类型为struct binder_transaction_log)
failed_transaction_log文件:使用函数binder_read_proc_transaction_log 其参数为
binder_transaction_log_failed (类型为struct binder_transaction_log)
在binder文件被打开后,其私有数据(private_data)的类型:
struct binder_proc
在这个数据结构中,主要包含了当前进程、进程ID、内存映射信息、Binder的统计信息和线程信息等。
在用户空间对Binder驱动程序进行控制主要使用的接口是mmap、poll和ioctl,ioctl主要使用的ID为:
#define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read)
#define BINDER_SET_IDLE_TIMEOUT _IOW('b', 3, int64_t)
#define BINDER_SET_MAX_THREADS _IOW('b', 5, size_t)
#define BINDER_SET_IDLE_PRIORITY _IOW('b', 6, int)
#define BINDER_SET_CONTEXT_MGR _IOW('b', 7, int)
#define BINDER_THREAD_EXIT _IOW('b', 8, int)
#define BINDER_VERSION _IOWR('b', 9, struct binder_version)
BR_XXX等宏为BinderDriverReturnProtocol,表示Binder驱动返回协议。
BC_XXX等宏为BinderDriverCommandProtocol,表示Binder驱动命令协议。
binder_thread是Binder驱动程序中使用的另外一个重要的数据结构,数据结构的定义如下所示:
struct binder_thread {
struct binder_proc *proc;
struct rb_node rb_node;
int pid;
int looper;
struct binder_transaction *transaction_stack;
struct list_head todo;
uint32_t return_error;
uint32_t return_error2;
wait_queue_head_t wait;
struct binder_stats stats;
};
binder_thread 的各个成员信息是从rb_node中得出。
BINDER_WRITE_READ是最重要的ioctl,它使用一个数据结构binder_write_read定义读写的数据。
struct binder_write_read {
signed long write_size;
signed long write_consumed;
unsigned long write_buffer;
signed long read_size;
signed long read_consumed;
unsigned long read_buffer;
};
1.2 servicemanager部分 servicemanager是一个守护进程,用于这个进程的和/dev/binder通讯,从而达到管理系统中各个服务的作用。
可执行程序的路径:
/system/bin/servicemanager
开源版本文件的路径:
frameworks/base/cmds/servicemanager/binder.h
frameworks/base/cmds/servicemanager/binder.c
frameworks/base/cmds/servicemanager/service_manager.c
程序执行的流程:
open():打开binder驱动
mmap():映射一个128*1024字节的内存
ioctl(BINDER_SET_CONTEXT_MGR):设置上下文为mgr
进入主循环binder_loop()
ioctl(BINDER_WRITE_READ),读取
binder_parse()进入binder处理过程循环处理
binder_parse()的处理,调用返回值:
当处理BR_TRANSACTION的时候,调用svcmgr_handler()处理增加服务、检查服务等工作。各种服务存放在一个链表(svclist)中。其中调用binder_等开头的函数,又会调用ioctl的各种命令。
处理BR_REPLY的时候,填充binder_io类型的数据结
1.3 binder的库的部分
binder相关的文件作为Android的uitls库的一部分,这个库编译后的名称为libutils.so,是Android系统中的一个公共库。
主要文件的路径如下所示:
frameworks/base/include/utils/*
frameworks/base/libs/utils/*
主要的类为:
RefBase.h :
引用计数,定义类RefBase。
Parcel.h :
为在IPC中传输的数据定义容器,定义类Parcel
IBinder.h:
Binder对象的抽象接口, 定义类IBinder
Binder.h:
Binder对象的基本功能, 定义类Binder和BpRefBase
BpBinder.h:
BpBinder的功能,定义类BpBinder
IInterface.h:
为抽象经过Binder的接口定义通用类,
定义类IInterface,类模板BnInterface,类模板BpInterface
ProcessState.h
表示进程状态的类,定义类ProcessState
IPCThreadState.h
表示IPC线程的状态,定义类IPCThreadState
各个类之间的关系如下所示:
各个类之间的关系如下所示:
在IInterface.h中定义的BnInterface和BpInterface是两个重要的模版,这是为各种程序中使用的。
BnInterface模版的定义如下所示:
template
class BnInterface : public INTERFACE, public BBinder
{
public:
virtual sp queryLocalInterface(const String16& _descriptor);
virtual String16 getInterfaceDescriptor() const;
protected:
virtual IBinder* onAsBinder();
};
BnInterface模版的定义如下所示:
template
class BpInterface : public INTERFACE, public BpRefBase
{
public:
BpInterface(const sp& remote);
protected:
virtual IBinder* onAsBinder();
};
这两个模版在使用的时候,起到得作用实际上都是双继承:使用者定义一个接口INTERFACE,然后使用BnInterface和BpInterface两个模版结合自己的接口,构建自己的BnXXX和BpXXX两个类。
DECLARE_META_INTERFACE和IMPLEMENT_META_INTERFACE两个宏用于帮助BpXXX类的实现:
#define DECLARE_META_INTERFACE(INTERFACE) \
static const String16 descriptor; \
static sp asInterface(const sp& obj); \
virtual String16 getInterfaceDescriptor() const; \
#define IMPLEMENT_META_INTERFACE(INTERFACE, NAME) \
const String16 I##INTERFACE::descriptor(NAME); \
String16 I##INTERFACE::getInterfaceDescriptor() const { \
return I##INTERFACE::descriptor; \
} \
sp I##INTERFACE::asInterface(const sp& obj) \
{ \
sp intr; \
if (obj != NULL) { \
intr = static_cast( \
obj->queryLocalInterface( \
I##INTERFACE::descriptor).get()); \
if (intr == NULL) { \
intr = new Bp##INTERFACE(obj); \
} \
} \
return intr; \
}
在定义自己的类的时候,只需要使用DECLARE_META_INTERFACE和IMPLEMENT_META_INTERFACE两个接口,并
结合类的名称,就可以实现BpInterface中的asInterface()和getInterfaceDescriptor()两个函数。
第二部分 Binder的运作
2.1 Binder的工作机制
Service Manager是一个守护进程,它负责启动各个进程之间的服务,对于相关的两个需要通讯的进程,它们通过调用libutil.so库实现通讯,而真正通讯的机制,是内核空间中的一块共享内存。
2.2 从应用程序的角度看Binder
从应用程序的角度看Binder一共有三个方面:
Native 本地:例如BnABC,这是一个需要被继承和实现的类。
Proxy 代理:例如BpABC,这是一个在接口框架中被实现,但是在接口中没有体现的类。
客户端:例如客户端得到一个接口ABC,在调用的时候实际上被调用的是BpABC
本地功能(Bn)部分做的:
实现BnABC:: BnTransact()
注册服务:IServiceManager::AddService
代理部分(Bp)做的:
实现几个功能函数,调用BpABC::remote()->transact()
客户端做的:
获得ABC接口,然后调用接口(实际上调用了BpABC,继而通过IPC调用了BnABC,然后调用了具体的功能)
在程序的实现过程中BnABC和BpABC是双继承了接口ABC。一般来说BpABC是一个实现类,这个实现类不需要在接口中体现,它实际上负责的只是通讯功能,不执行具体的功能;BnABC则是一个接口类,需要一个真正工作的类来继承、实现它,这个类才是真正执行具体功能的类。
在客户端中,从ISeriviceManager中获得一个ABC的接口,客户端调用这个接口,实际上是在调用BpABC,而BpABC又通过Binder的IPC机制和BnABC通讯,BnABC的实现类在后面执行。
事实上,
服务器
的具体实现和客户端是两个不同的进程,如果不考虑进程间通讯的过程,从调用者的角度,似乎客户端在直接调用另外一个进程间的函数——当然这个函数必须是接口ABC中定义的。
2.3 ISericeManager的作用
ISericeManager涉及的两个文件是ISericeManager.h和ISericeManager.cpp。这两个文件基本上是
ISericeManager。ISericeManager是系统最先被启动的服务。非常值得注意的是:ISericeManager本地功能并没有使
现,它实际上由ServiceManager守护进程执行,而用户程序通过调用BpServiceManager来获得其他的服务。
在ISericeManager.h中定义了一个接口,用于得到默认的ISericeManager:
sp defaultServiceManager();
这时得到的ISericeManager实际上是一个全局的ISericeManager。
第三部分 程序中Binder的具体实现
3.1 一个利用接口的具体实现
PermissionController也是libutils中定义的一个有关权限控制的接口,它一共包含两个文件:IPermissionController.h和IPermissionController.cpp这个结构在所有类的实现中都是类似的。
头文件IPermissionController.h的主要内容是定义IPermissionController接口和类BnPermissionController:
class IPermissionController : public IInterface
{
public:
DECLARE_META_INTERFACE(PermissionController);
virtual bool checkPermission(const String16& permission,int32_t pid, int32_t uid) = 0;
enum {
CHECK_PERMISSION_TRANSACTION = IBinder::FIRST_CALL_TRANSACTION
};
};
class BnPermissionController : public BnInterface
{
public:
virtual status_t onTransact( uint32_t code,
const Parcel& data,
Parcel* reply,
uint32_t flags = 0);
};
IPermissionController是一个接口类,只有checkPermission()一个纯虚函数。
BnPermissionController继承了以BnPermissionController实例化模版类BnInterface。因
此,BnPermissionController,事实上BnPermissionController双继承了BBinder和
IPermissionController。
实现文件IPermissionController.cpp中,首先实现了一个BpPermissionController。
class BpPermissionController : public BpInterface
{
public:
BpPermissionController(const sp& impl)
: BpInterface(impl)
{
}
virtual bool checkPermission(const String16& permission, int32_t pid, int32_t uid)
{
Parcel data, reply;
data.writeInterfaceToken(IPermissionController::
getInterfaceDescriptor());
data.writeString16(permission);
data.writeInt32(pid);
data.writeInt32(uid);
remote()->transact(CHECK_PERMISSION_TRANSACTION, data, &reply);
if (reply.readInt32() != 0) return 0;
return reply.readInt32() != 0;
}
};
IMPLEMENT_META_INTERFACE(PermissionController, "android.os.IPermissionController");
BpPermissionController继承了BpInterface,它本身是一个
已经实现的类,而且并没有在接口中体现。这个类按照格式写就可以,在实现checkPermission()函数的过程中,使用Parcel作为传输数据
的容器,传输中时候transact()函数,其参数需要包含枚举值CHECK_PERMISSION_TRANSACTION。
IMPLEMENT_META_INTERFACE用于扶助生成。
BnPermissionController中实现的onTransact()函数如下所示:
status_t BnPermissionController:: BnTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch(code) {
case CHECK_PERMISSION_TRANSACTION: {
CHECK_INTERFACE(IPermissionController, data, reply);
String16 permission = data.readString16();
int32_t pid = data.readInt32();
int32_t uid = data.readInt32();
bool res = checkPermission(permission, pid, uid);
reply->writeInt32(0);
reply->writeInt32(res ? 1 : 0);
return NO_ERROR;
} break;
default:
return BBinder:: BnTransact(code, data, reply, flags);
}
}
在onTransact()函数中根据枚举值判断数据使用的方式。注意,由于BnPermissionController也是继承了类
IPermissionController,但是纯虚函数checkPermission()依然没有实现。因此这个
BnPermissionController类并不能实例化,它其实也还是一个接口,需要一个实现类来继承它,那才是实现具体功能的类。
3.2 BnABC的实现
本地服务启动后将形成一个守护进程,具体的本地服务是由一个实现类继承BnABC来实现的,这个服务的名称通常叫做ABC。
在其中,通常包含了一个instantiate()函数,这个函数一般按照如下的方式实现:
void ABC::instantiate() {
defaultServiceManager()->addService(
String16("XXX.ABC"), new ABC ());
}
按照这种方式,通过调用defaultServiceManager()函数,将增加一个名为"XXX.ABC"的服务。
在这个defaultServiceManager()函数中调用了:
ProcessState::self()->getContextObject(NULL));
IPCThreadState* ipc = IPCThreadState::self();
IPCThreadState::talkWithDriver()
在ProcessState 类建立的过程中调用open_driver()打开
驱动
程序,在talkWithDriver()的执行过程中。
3.3 BpABC调用的实现
BpABC调用的过程主要通过mRemote()->transact() 来传输数据,mRemote()是BpRefBase的成员,它是一个IBinder。这个调用过程如下所示:
mRemote()->transact()
Process::self()
IPCThreadState::self()->transact()
writeTransactionData()
waitForResponse()
talkWithDriver()
ioctl(fd, BINDER_WRITE_READ, &bwr)
在IPCThreadState::executeCommand()函数中,实现传输操作。
发表评论
-
Linux x86 编译 Android 遭遇 gnu/stubs-64.h
2011-08-19 10:43 1873这两天心血来潮,执行完 repo sync 后,顺手来了一下 ... -
使用Cygwin下载Android代码树
2011-03-16 20:45 1589--官方说明-- To set up y ... -
Cygwin在win下下载android源代码
2011-03-16 20:43 1083首先下载cygwin,cygwin是一个类linux平台。即在 ... -
Android NDK 环境搭建 - 安装配置 Cygwin
2011-03-16 20:40 29671. NDK 下载 最新版 Android NDK 开发工具包 ... -
Android-触感反馈和声音反馈的效果实现
2011-03-15 12:07 29611)只有系统设置中打开触感反馈选项,方法performHa ... -
socket的服务端框架
2011-03-07 14:17 2709最近查了不少java下面nio ... -
android UI 优化系列之 创建RGB565的缓存
2011-03-05 16:42 1921关于如何优化activity的 ... -
SocketChannel 和 DatagramChannel
2011-03-05 16:19 1931SocketChannel 叫套接字通道,面向流,就是通 ... -
Android 调试工具集
2011-03-05 13:25 12841.TraceView1)功能:用于热点分析和性 ... -
Android 中文API (33) —— Checkable
2011-03-03 17:45 1121声明 欢迎转载,但请保留文章原始出处:) ... -
Toast 和 Looper
2011-03-03 09:02 1150Toast 和 Looper,一个属于 android.w ... -
Activity 与 Main Loope
2011-03-03 08:59 1035上文抛出了一个疑问:UI 线程是在哪里绑定 Looper ... -
Class loading in Android : Begin with PathClassLoader
2011-03-03 08:56 1195Google 在 Android 文档里的《What is ... -
Linux x86 编译 Android 遭遇 gnu/stubs-64.h
2011-03-03 08:54 1264这两天心血来潮,执行完 repo sync 后,顺手来了一 ... -
读《Multitasking the Android Way》(一)
2011-03-03 08:50 1180Android Developers Blog 发表了一篇 ... -
从 Remote Service Binding 学习 AIDL 与 IPC
2011-03-03 08:47 1573默认情况下,一个应用不管有多少个 Activity、Ser ... -
Android SDK Add-on Configure, Compile and Release
2011-03-03 08:44 1925SDK Add-on 是一个比较小众的话题,一是通常厂商不 ... -
Activity Task 与 Intent Filter Flag
2011-03-03 08:42 1259接触 Android 以来,一直觉得对 task、affi ... -
android的原理,不需要太多的剩余内存
2011-03-02 16:05 934不用在意剩余内存的大 ... -
Android IPC框架分析 Binder,Service,Service manager
2011-03-02 15:19 1405我首先从宏观的角度 ...
相关推荐
### Android的IPC机制-Binder ...通过以上内容,我们可以看到,Binder机制是Android系统中进程间通信的核心技术之一,它不仅提高了系统的效率和安全性,还为开发者提供了强大的工具来构建复杂的应用和服务。
简要介绍Android IPC机制Binder
这样不仅能够帮助开发者更好地利用现有的Binder机制,也能够促进开发者设计自己的高效IPC方案。 总之,Binder框架在Android系统中扮演着至关重要的角色。它不仅让Android系统内部服务之间的通信变得高效和安全,还...
Binder机制包括Client、Server、Service Manager和Binder驱动四部分,书中会详细介绍这四个部分的角色和交互过程。 在讲解Binder时,高焕堂先生会深入到AIDL,这是一种用于定义接口的idl语言,让开发者能够方便地...
【一图流】_02_一张图看懂 Android 进程间通信(IPC)Binder机制: 此图表述了Android系统_进程间通信(IPC)机制全部体系,其中重点放在 Android系统中 重用 的 Binder机制 上,详尽细致,希望对大家有用;
Android进程间通信(IPC)机制Binder简要介绍和学习计划
ServiceManager作为Binder机制中的核心组件,负责管理和分发服务,对于整个Android系统的正常运行起着至关重要的作用。通过对Binder机制的理解,开发者可以更好地掌握Android应用开发的核心技术。
Android Binder机制完全解析 在Android系统中,Binder是实现进程间通信(IPC,Inter-Process Communication)的关键技术,它是Android系统服务和应用程序之间交互的主要方式。深入理解Binder机制对于Android应用...
总结,Android Binder机制是Android系统实现高效进程间通信的核心,通过AIDL定义接口,结合服务端、客户端和Binder驱动,我们可以实现跨进程的数据交换和服务共享。深入理解并掌握Binder,对于开发Android应用程序...
Android Binder机制是Android系统的核心组件之一,它负责进程间通信(IPC,Inter-Process Communication),使得不同应用程序或者同一系统中的不同组件能够有效地交互。在Android系统中,由于每个应用程序运行在自己...
在Android系统中,Binder机制是实现进程间通信(IPC)的核心工具,尤其在跨应用程序组件交互时至关重要。本文将深入探讨Android Binder机制及其在组件化思想中的应用。 1. Android组件化思想 Android应用的组件化...
Binder机制是Android系统中用于实现跨进程通信(IPC)的核心技术之一。通过Binder机制,不同的应用程序和服务能够在不同的进程中相互通信,共享数据或请求服务。 #### 二、Binder机制的关键组件 在深入探讨Binder...
Android的Binder机制是其独特的进程间通信(IPC)方式,主要负责Android系统中服务与服务、应用与服务之间的通信。本文将深入解析Binder在Java层和C++层的实现,并通过一个简单的模拟示例来阐述如何在不同进程中进行...
android技术内幕--系统卷,第三章Android的IPC机制,关于Binder通信机制,详细讲解,并附有framework层代码说明,
Android的Binder机制是Android系统中实现进程间通信(IPC,Inter-Process Communication)的核心组件,它的设计和实现涉及操作系统内核层面以及用户空间的应用层。Binder机制使得Android应用程序能够跨越进程边界,...
在 Android 中,Binder 机制是通过 Binder Driver 实现的。Binder Driver 是一个内核模块,它提供了一个接口供进程之间进行通信。 Binder 机制的主要组件包括 Binder Driver、Binder Server 和 Binder Client。...
Android的Binder机制是Android系统中实现进程间通信(IPC,Inter-Process Communication)的核心组件,它的设计和实现对于理解Android系统的内部运作至关重要。Binder机制包括驱动程序、用户空间库、服务代理和...
Android的IPC机制——写的比较深入的文章,详细介绍了binder的原理 work 版