`
peijunlin2008
  • 浏览: 173849 次
  • 性别: Icon_minigender_1
  • 来自: 河北省
社区版块
存档分类
最新评论

<转>Unsupported major.minor version 49.0错误详解

阅读更多
http://dev.firnow.com/course/3_program/java/javajs/20090304/157646_2.html

一:要解决的问题

我们在尝鲜 JDK1.5 的时候,相信不少人遇到过 Unsupported major.minor version 49.0 错误,当时定会茫然不知所措。因为刚开始那会儿,网上与此相关的中文资料还不多,现在好了,网上一找就知道是如何解决,大多会告诉你要使用 JDK 1.4 重新编译。那么至于为什么,那个 major.minor 究竟为何物呢?这就是本篇来讲的内容,以使未错而先知。

我觉得我是比较幸运的,因为在遇到那个错误之前已研读过《深入 Java 虚拟机》第二版,英文原书名为《Inside the Java Virtual Machine》( Second Edition),看时已知晓 major.minor 藏匿于何处,但没有切身体会,待到与 Unsupported major.minor version 49.0 真正会面试,正好是给我验证了一个事实。

首先我们要对 Unsupported major.minor version 49.0 建立的直接感觉是:JDK1.5 编译出来的类不能在 JVM 1.4 下运行,必须编译成 JVM 1.4 下能运行的类。(当然,也许你用的还是 JVM 1.3 或 JVM 1.2,那么就要编译成目标 JVM 能认可的类)。这也解决问题的方向。

二:major.minor 栖身于何处

何谓 major.minor,且又居身于何处呢?先感性认识并找到 major.minor 来。

写一个 Java Hello World! 代码,然后用 JDK 1.5 的编译器编译成,HelloWorld.java



package com.unmi;  
 
public class HelloWorld  
{  
    public static void main(String[] args)  
     {  
         System.out.println("Hello, World!");  
     }  

package com.unmi; public class HelloWorld { public static void main(String[] args) { System.out.println("Hello, World!"); } }

用 JDK 1.5 的 javac -d . HelloWorld.java 编译出来的字节码 HelloWorld.class 用 UltraEdit 打开来的内容如图所示:




从上图中我们看出来了什么是 major.minor version 了,它相当于一个软件的主次版本号,只是在这里是标识的一个 Java Class 的主版本号和次版本号,同时我们看到 minor_version 为 0x0000,major_version 为 0x0031,转换为十制数分别为0 和 49,即 major.minor 就是 49.0 了。

三:何谓 major.minor 以及何用

Class 文件的第 5-8 字节为 minor_version 和 major_version。Java class 文件格式可能会加入新特性。class 文件格式一旦发生变化,版本号也会随之变化。对于 JVM 来说,版本号确定了特定的 class 文件格式,通常只有给定主版本号和一系列次版本号后,JVM 才能够读取 class 文件。如果 class 文件的版本号超出了 JVM 所能处理的有效范围,JVM 将不会处理该 class 文件。

在 Sun 的 JDK 1.0.2 发布版中,JVM 实现支持从 45.0 到 45.3 的 class 文件格式。在所有 JDK 1.1 发布版中的 JVM 都能够支持版本从 45.0 到 45.65535 的 class 文件格式。在 Sun 的 1.2 版本的 SDK 中,JVM 能够支持从版本 45.0 到46.0 的 class 文件格式。

1.0 或 1.2 版本的编译器能够产生版本号为 45.3 的 class 文件。在 Sun 的 1.2 版本 SDK 中,Javac 编译器默认产生版本号为 45.3 的 class 文件。但如果在 javac 命令行中指定了 -target 1.2 标志,1.2 版本的编译器将产生版本号为 46.0 的 class 文件。1.0 或 1.1 版本的 JVM 上不能运行使用-target 1.2 标志所产生的 class 文件。

JVM 实现的 第二版中修改了对 class 文件主版本号和次版本号的解释。对于第二版而言,class 文件的主版本号与 Java 平台主发布版的版本号保持一致(例如:在 Java 2 平台发布版上,主版本号从 45 升至 46),次版本号与特定主平台发布版的各个发布版相关。因此,尽管不同的 class 文件格式可以由不同的版本号表示,但版本号不一样并不代表 class 文件格式不同。版本号不同的原因可能只是因为 class 文件由不同发布版本的 java 平台产生,可能 class 文件的格式并没有改变。

上面三段节选自《深入 Java 虚拟机》,啰嗦一堆,JDK 1.2 开启了 Java 2 的时代,但那个年代仍然离我们很远,我们当中很多少直接跳在 JDK 1.4 上的,我也差不多,只是项目要求不得不在一段时间里委屈在 JDK 1.3 上。不过大致我们可以得到的信息就是每个版本的 JDK 编译器编译出的 class 文件中都带有一个版本号,不同的 JVM 能接受一个范围 class 版本号,超出范围则要出错。不过一般都是能向后兼容的,知道 Sun 在做 Solaris 的一句口号吗?保持对先前版本的 100% 二进制兼容性,这也是对客户的投资保护。

四:其他确定 class 的 major.minor version 办法

1)Eclipse 中查看
      Eclipse 3.3 加入的新特征,当某个类没有关联到源代码,打开它会显示比较详细的类信息,当然还未到源码级别了,看下图是打开 2.0 spring.jar 中 ClasspathXmlApplicationContext.class 显示的信息



2)命令 javap -verbose
       对于编译出的 class 文件用 javap -verbose 能显示出类的 major.minor 版本,见下图:



3)   MANIFEST 文件
      把 class 打成的 JAR 包中都会有文件 META-INF\MANIFEST,这个文件一般会有编译器的信息,下面列几个包的 META-INF\MANIFEST 文件内容大家看看
      ·Velocity-1.5.jar 的 META-INFO\MANIFEST 部份内容
                   Manifest-Version: 1.0
                   Ant-Version: Apache Ant 1.7.0
                   Created-By: Apache Ant
                   Package: org.apache.velocity
                  Build-Jdk: 1.4.2_08
                   Extension-Name: velocity
            我们看到是用 ant 打包,构建用的JDK是 1.4.2_08,用 1.4 编译的类在 1.4 JVM 中当然能运行。如果那人用 1.5 的 JDK 来编译,然后用 JDK 1.4+ANT 来打包就太无聊了。
      ·2.0 spring.jar 的 META-INFO\MANIFEST 部份内容
                   Manifest-Version: 1.0
                   Ant-Version: Apache Ant 1.6.5
                  Created-By: 1.5.0_08-b03 (Sun Microsystems Inc.)
                   Implementation-Title: Spring Framework
           这下要注意啦,它是用的 JDK 1.5 来编译的,那么它是否带了 -target 1.4 或 -target 1.3 来编译的呢?确实是的,可以查看类的二进制文件,这是最保险的。所在 spring-2.0.jar 也可以在 1.4 JVM 中加载执行。
      ·自已一个项目中用 ant 打的 jar 包的 META-INFO\MANIFEST
                   Manifest-Version: 1.0
                   Ant-Version: Apache Ant 1.7.0
                  Created-By: 1.4.2-b28 (Sun Microsystems Inc.)
            用的是 JDK 1.4 构建打包的。

第一第二种办法能明确知道 major.minor version,而第三种方法应该也没问题,但是碰到变态构建就难说了,比如谁把那个 META-INFO\MANIFEST 打包后换了也未可知。直接查看类的二进制文件的方法可以万分保证,准确无误,就是工具篡改我也认了。

五:编译器比较及症节之所在

现在不妨从 JDK 1.1 到 JDK 1.7 编译器编译出的 class 的默认 minor.major version 吧。(又走到 Sun 的网站上翻腾出我从来都没用过的古董来)

JDK 编译器版本 target 参数 十六进制 minor.major 十进制 minor.major
jdk1.1.8 不能带 target 参数 00 03 00 2D 45.3
jdk1.2.2 不带(默认为 -target 1.1) 00 03 00 2D 45.3
jdk1.2.2 -target 1.2 00 00   00 2E 46.0
jdk1.3.1_19 不带(默认为 -target 1.1) 00 03 00 2D 45.3
jdk1.3.1_19 -target 1.3 00 00   00 2F 47.0
j2sdk1.4.2_10 不带(默认为 -target 1.2) 00 00   00 2E 46.0
j2sdk1.4.2_10 -target 1.4 00 00   00 30 48.0
jdk1.5.0_11 不带(默认为 -target 1.5) 00 00   00 31 49.0
jdk1.5.0_11 -target 1.4 -source 1.4 00 00   00 30 48.0
jdk1.6.0_01 不带(默认为 -target 1.6) 00 00   00 32 50.0
jdk1.6.0_01 -target 1.5 00 00   00 31 49.0
jdk1.6.0_01 -target 1.4 -source 1.4 00 00   00 30 48.0
jdk1.7.0 不带(默认为 -target 1.6) 00 00   00 32 50.0
jdk1.7.0 -target 1.7 00 00   00 33 51.0
jdk1.7.0 -target 1.4 -source 1.4 00 00   00 30 48.0
Apache Harmony 5.0M3 不带(默认为 -target 1.2) 00 00   00 2E 46.0
Apache Harmony 5.0M3 -target 1.4 00 00   00 30 48.0

上面比较是 Windows 平台下的 JDK 编译器的情况,我们可以此作些总结:

1) -target 1.1 时 有次版本号,target 为 1.2 及以后都只用主版本号了,次版本号为 0
2) 从 1.1 到 1.4 语言差异比较小,所以 1.2 到 1.4 默认的 target 都不是自身相对应版本
3) 1.5 语法变动很大,所以直接默认 target 就是 1.5。也因为如此用 1.5 的 JDK 要生成目标为 1.4 的代码,光有 -target 1.4 不够,必须同时带上 -source 1.4,指定源码的兼容性,1.6/1.7 JDk 生成目标为 1.4 的代码也如此。
4) 1.6 编译器显得较为激进,默认参数就为 -target 1.6。因为 1.6 和 1.5 的语法无差异,所以用 -target 1.5 时无需跟着 -source 1.5。
5) 注意 1.7 编译的默认 target 为 1.6
6) 其他第三方的 JDK 生成的 Class 文件格式版本号同对应 Sun 版本 JDK
7) 最后一点最重要的,某个版本的 JVM 能接受 class 文件的最大主版本号不能超过对应 JDK 带相应 target 参数编译出来的 class 文件的版本号。

上面那句话有点长,一口气读过去不是很好理解,举个例子:1.4 的 JVM 能接受最大的 class 文件的主版本号不能超过用 1.4

JDK 带参数 -target 1.4 时编译出的 class 文件的主版本号,也就是 48。

因为 1.5 JDK 编译时默认 target 为 1.5,出来的字节码 major.minor version 是 49.0,所以 1.4 的 JVM 是无法接受的,只有抛出错误。

那么又为什么从 1.1 到 1.2、从 1.2 到 1.3 或者从 1.3 到 1.4 的 JDK 升级不会发生 Unsupported major.minor version 的错误呢,那是因为 1.2/1.3/1.4 都保持了很好的二进制兼容性,看看 1.2/1.3/1.4 的默认 target 分别为 1.1/1.1/1.2 就知道了,也就是默认情况下1.4 JDK 编译出的 class 文件在 JVM 1.2 下都能加载执行,何况于 JVM 1.3 呢?(当然要去除使用了新版本扩充的 API 的因素)

六:找到问题解决的方法

那么现在如果碰到这种问题该知道如何解决了吧,还会像我所见到有些兄弟那样,去找个 1.4 的 JDK 下载安装,然后用其重新编译所有的代码吗?其实大可不必如此费神,我们一定还记得 javac 还有个 -target 参数,对啦,可以继续使用 1.5 JDK,编译时带上参数 -target 1.4 -source 1.4 就 OK 啦,不过你一定要对哪些 API 是 1.5 JDK 加入进来的了如指掌,不能你的 class 文件拿到 JVM 1.4 下就会 method not found。目标 JVM 是 1.3 的话,编译选项就用 -target 1.3 -source 1.3 了。

相应的如果使用 ant ,它的 javac 任务也可对应的选择 target 和 source

<javac target="1.4" source="1.4" ............................/>

如果是在开发中,可以肯定的是现在真正算得上是 JAVA IDE 对于工程也都有编译选项设置目标代码的。例如 Eclipse 的项目属性中的 Java Compiler 设置,如图




自已设定编译选项,你会看到选择不同的 compiler compliance level 是,Generated class files compatibility 和 Source compatibility 也在变,你也可以手动调整那两项,手动设置后你就不用很在乎用的什么版本的编译器了,只要求他生成我们希望的字节码就行了,再引申一下就是即使源代码是用 VB 写的,只要能编译成 JVM 能执行的字节码都不打紧。在其他的 IDE 也能找到相应的设置对话框的。

其他时候,你一定要知道当前的 JVM 是什么版本,能接受的字节码主版本号是多少(可对照前面那个表)。获息当前 JVM 版本有两种途径:

第一:如果你是直接用 java 命令在控制台执行程序,可以用 java -version 查看当前的 JVM 版本,然后确定能接受的 class 文件版本

第二:如果是在容器中执行,而不能明确知道会使用哪个 JVM,那么可以在容器中执行的程序中加入代码 System.getProperty("java.runtime.version"); 或 System.getProperty("java.class.version"),获得 JVM 版本和能接受的 class 的版本号。

最后一绝招,如果你不想针对低版本的 JVM 用 target 参数重新编译所有代码;如果你仍然想继续在代码中用新的 API 的话;更有甚者,你还用了 JDK 1.5 的新特性,譬如泛型、自动拆装箱、枚举等的话,那你用 -target 1.4 -source 1.4 就没法编译通过,不得不重新整理代码。那么告诉你最后一招,不需要再从源代码着手,直接转换你所正常编译出的字节码,继续享用那些新的特性,新的 API,那就是:请参考之前的一篇日志:Retrotranslator让你用JDK1.5的特性写出的代码能在JVM1.4中运行,我就是这么用的,做好测试就不会有问题的。

七:再议一个实际发生的相关问题

这是一个因为拷贝 Tomcat 而产生的 Unsupported major.minor version 49.0 错误。情景是:我本地安装的是 JDK 1.5,然后在网上找了一个 EXE 的 Tomcat 安装文件安装了并且可用。后来同事要一个 Tomcat,不想下载或安装,于是根据我以往的经验是把我的 Tomcat 整个目录拷给他应该就行了,结果是拿到他那里浏览 jsp 文件都出现 Unsupported major.minor version 49.0 错误,可以确定的是他安装的是 1.4 的 JDK,但我还是有些纳闷,先前对这个问题还颇有信心的我傻眼了。惯性思维是编译好的 class 文件拿到低版本的 JVM 会出现如是异常,可现并没有用已 JDK 1.5 编译好的类要执行啊。

后来仔细看异常信息,终于发现了 %TOMCAT_HOME%\common\lib\tools.jar 这一眉目,因为 jsp 文件需要依赖它来编译,打来这个 tools.jar 中的一个 class 文件来看看,49.0,很快我就明白原来这个文件是在我的机器上安装 Tomcat 时由 Tomcat 安装程序从 %JDK1.5%\lib 目录拷到 Tomcat 的 lib 目录去的,造成在同事机器上编译 JSP 时是 1.4 的 JVM 配搭着 49.0 的 tools.jar,那能不出错,于是找来 1.4 JDK 的 tools.jar 替换了 Tomcat 的就 OK 啦。

八:小结

其实理解 major.minor 就像是我们可以这么想像,同样是微软件的程序,32 位的应用程序不能拿到 16 位系统中执行那样。

如果我们发布前了解到目标 JVM 版本,知道怎么从 java class 文件中看出 major.minor 版本来,就不用等到服务器报出异常才着手去解决,也就能预知到可能发生的问题。

其他时候遇到这个问题应具体解决,总之问题的根由是低版本的 JVM 无法加载高版本的 class 文件造成的,找到高版本的 class 文件处理一下就行了。


分享到:
评论

相关推荐

    MyEclipse 5.0GA + WebLogic 9.2 配置详解

    其次,如果选择J2EE 1.3进行开发,可能会遇到“Unsupported major.minor version 49.0”的错误,这是由于WebLogic 8不支持JDK 1.5导致的。为了解决这个问题,你可以选择使用JDK 1.4重新编译项目,或者升级WebLogic到...

    MyEclipse+WebLogic配置详解[参考].pdf

    WebLogic 8不支持JDK 1.5,这意味着使用JDK 1.5编译的程序在WebLogic 8上运行时会报"Unsupported major.minor version 49.0"错误。解决此问题的方法是使用JDK 1.4重新编译代码,或者升级WebLogic到9.2版,因为...

    weblogic配置

    - WebLogic 8不支持JDK 1.5,因此如果使用JDK 1.5编译的程序尝试部署到WebLogic 8上,会遇到"Unsupported major.minor version 49.0"的错误。解决方案是使用JDK 1.4重新编译代码,或者升级WebLogic到支持JDK 1.5的...

    MyEclipse 5.0 + WebLogic 9.2 配置解.doc

    如果使用JDK 1.5编译的程序部署到WebLogic 8,会遇到“Unsupported major.minor version 49.0”的错误。为了解决这个问题,我们需要使用支持JDK 1.5的WebLogic 9.2版本。 #### 四、配置WebLogic 9.2 ##### 安装...

    永磁同步电机发电给蓄电池充电控制仿真模型解析 - PMSG与双闭环控制技术

    内容概要:本文详细介绍了永磁同步旋转电机(PMSG)发电给蓄电池充电的控制仿真模型。该模型主要由永磁同步发电机、三相整流桥、整流桥控制模块、测量模块和蓄电池组成。文中首先解释了各组件的功能及其相互协作方式,接着重点讨论了整流桥控制模块的转速、电流双闭环控制机制,尤其是PI控制器的应用。此外,还探讨了储能管理和系统性能优化的方法,如通过LC滤波、自适应偏置、在线参数辨识等手段提高系统的稳定性和效率。最后,通过对实际波形的分析展示了系统的优异表现。 适合人群:从事电力系统、新能源领域的研究人员和技术人员,以及对电机控制感兴趣的工程专业学生。 使用场景及目标:适用于研究和开发高效的新能源发电与储能系统,旨在提升发电效率、稳定性和可靠性。具体应用场景包括但不限于风电场、太阳能电站、电动汽车充电站等。 其他说明:文中提供的代码片段和参数配置均为简化版本,实际应用中需根据具体情况进一步调整优化。

    餐饮业人才流失现状分析及对策研究.doc

    餐饮业人才流失现状分析及对策研究

    车辆动力学领域LQR/LQG控制的主动悬架模型研究及其MATLAB/Simulink实现

    内容概要:本文详细探讨了LQR(线性二次调节器)和LQG(线性二次高斯)控制在车辆主动悬架系统中的应用。文章首先介绍了LQR控制的基本原理,即通过状态反馈控制使系统达到最优状态。接着,通过Simulink建立了多种自由度的主动悬架模型(2自由度、4自由度和7自由度),并在MATLAB中实现了相应的控制算法。文中展示了不同自由度模型的关键性能指标对比,如悬架动挠度、簧载质量加速度等,并提供了具体的MATLAB代码示例。此外,文章还讨论了LQG控制中卡尔曼滤波的应用,以及其在处理噪声环境中的优势。 适合人群:从事车辆工程、控制系统设计的研究人员和技术人员,尤其是对主动悬架系统感兴趣的读者。 使用场景及目标:适用于希望深入了解LQR/LQG控制理论及其在车辆主动悬架系统中具体应用的人群。目标是帮助读者掌握如何利用MATLAB/Simulink搭建和优化主动悬架模型,从而提高车辆行驶的舒适性和稳定性。 其他说明:文章不仅提供了理论解释,还包括大量实用的代码片段和图表,便于读者理解和实践。特别强调了在不同自由度模型之间的选择依据,以及LQG控制在实际应用场景中的重要性。

    离职交接表.doc

    离职交接表.doc

    计算机课程设计相关资源

    计算机课程设计相关资源

    MATLAB中滚动轴承二自由度动力学建模与故障动态响应仿真

    内容概要:本文详细介绍了如何使用MATLAB进行滚动轴承的二自由度动力学建模,涵盖正常状态及内外圈、滚动体故障的动态响应仿真。首先建立了二自由度的动力学方程,定义了质量、阻尼和刚度矩阵,并根据不同类型的故障(内圈、外圈、滚动体)设置了相应的故障激励力。通过ODE求解器(如ode45)求解微分方程,得到时域内的振动波形。接着进行了频谱分析,展示了不同状态下频谱图的特点,如内圈故障在转频的倍频处出现峰值,外圈故障在较低频段有特征峰,滚动体故障表现为宽频带特性。此外,还提供了故障特征提取的方法,如包络谱分析。 适用人群:机械工程领域的研究人员和技术人员,特别是从事机械设备故障诊断和预测性维护的专业人士。 使用场景及目标:适用于需要理解和研究滚动轴承在不同工况下的动态行为的研究项目。主要目标是帮助用户掌握如何利用MATLAB进行轴承动力学建模,识别并分析各种故障模式,从而提高设备的可靠性和安全性。 其他说明:文中提供的代码可以直接用于实验验证,同时给出了许多实用的提示和注意事项,如选择合适的ODE求解器、合理设置故障幅值以及避免数值发散等问题。

    低通滤波器:滤波算法及其在传感器数据处理中的应用

    内容概要:本文详细介绍了低通滤波器的基本概念、不同类型的滤波算法以及它们的应用场景。首先解释了简单的移动平均滤波,这是一种常用且易实现的方法,适用于快速去除高频噪声。接着深入探讨了一阶RC低通滤波器的工作原理和实现方式,强调了alpha系数的选择对滤波效果的影响。此外,还提到了基于环形缓冲区的实时滤波技术和更高阶的巴特沃斯滤波器,后者提供了更好的频率选择性和稳定性。文中通过多个实例展示了如何根据具体的传感器数据特点选择合适的滤波算法,并给出了相应的Python代码片段用于演示和验证。 适合人群:从事嵌入式系统开发、传感器数据分析及相关领域的工程师和技术爱好者。 使用场景及目标:帮助开发者理解和掌握不同类型低通滤波器的特点与实现方法,以便更好地应用于实际项目中,如处理陀螺仪、温度传感器、心率传感器等设备的数据,提高信号质量和系统的可靠性。 其他说明:文章不仅提供了理论知识,还包括了许多实用技巧和注意事项,如滤波器参数的选择、初始化处理、采样率稳定性等问题,这些都是确保滤波效果的关键因素。同时,附带的代码示例可以帮助读者更快地上手实践。

    基于自抗扰控制(ADRC)的永磁同步电机(PMSM)矢量控制技术及其实现

    内容概要:本文深入探讨了基于自抗扰控制(ADRC)的永磁同步电机(PMSM)矢量控制技术。首先介绍了PMSM的特点及其广泛应用背景,强调了矢量控制在实现电机高性能控制方面的重要性。针对传统矢量控制存在的不足,引入了ADRC这一新型控制策略,详细解释了ADRC的工作原理,包括跟踪微分器(TD)、扩张状态观测器(ESO)和非线性状态误差反馈控制律(NLSEF)三个组成部分的功能。随后展示了如何将ADRC应用于PMSM的电流环和速度环控制中,并提供了具体的Python代码实现示例。实验结果显示,在面对负载变化等扰动情况下,采用ADRC的控制系统表现出更好的稳定性和平滑性。 适用人群:从事电机控制领域的研究人员和技术人员,特别是那些希望深入了解并掌握先进控制算法的人群。 使用场景及目标:适用于需要提高永磁同步电机控制系统鲁棒性和响应速度的应用场合,如工业自动化设备、电动汽车等领域。目标是帮助读者理解ADRC的基本概念及其在PMSM矢量控制中的具体应用,从而能够在实际项目中实施该技术。 其他说明:文中还讨论了一些实用技巧,如参数调整的方法和注意事项,以及与其他控制方法(如PI控制)的性能对比。此外,作者鼓励读者尝试不同的参数配置以找到最适合特定应用场景的最佳设置。

    外贸公司员工离职流程及工作交接程序.xls

    外贸公司员工离职流程及工作交接程序.xls

    基于博途1200PLC的教学楼打铃控制系统:数码管显示与定时打铃的实现

    内容概要:本文详细介绍了基于西门子S7-1200 PLC的教学楼打铃控制系统的设计与实现。硬件方面,采用4位7段共阳数码管直接连接PLC的DO点,通过中间继电器或晶体管输出型PLC确保电流足够。软件部分,使用SCL语言编写动态扫描程序,实现数码管的时间显示,并通过系统时钟和定时器实现精确的打铃控制。此外,文章还讨论了数码管显示调试中的常见问题及其解决方案,如鬼影消除、段码转换和时间同步等。 适合人群:具备PLC编程基础的技术人员,尤其是对工业自动化感兴趣的工程师。 使用场景及目标:适用于需要构建或维护教学楼打铃系统的学校和技术爱好者。目标是掌握PLC编程技巧,理解数码管显示和定时控制的工作原理,以及提高对硬件配置和调试的理解。 其他说明:文中提供了详细的代码片段和硬件配置建议,帮助读者更好地理解和实施该项目。同时,强调了项目中的挑战和解决方案,使读者能够避免常见的错误并优化系统性能。

    三菱PLC与显触摸屏实现定长送料系统的伺服/步进控制

    内容概要:本文详细介绍了如何利用三菱PLC(具体型号为FX5U-32MT)和显触摸屏构建定长送料控制系统。该系统支持伺服和步进电机两种驱动方式,涵盖了点动、相对定位和绝对定位三大核心功能。文中不仅提供了详细的硬件连接方法,还展示了具体的PLC梯形图编程实例,以及触摸屏界面的设计要点。特别强调了调试过程中可能遇到的问题及其解决方案,如电子齿轮比计算错误、绝对定位前的原点回归、急停信号的正确接入等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些对PLC编程和伺服/步进电机控制有一定基础的人群。 使用场景及目标:适用于需要精确控制物料长度的场合,如包装、切割等行业。通过该系统可以提高生产效率,减少人工干预,确保送料精度达到±0.02mm。此外,还可以帮助用户掌握PLC编程技巧,提升对伺服/步进电机的理解。 其他说明:文章中提到的一些关键技术点,如点动模式的手动微调、绝对定位的坐标系建立、相对定位的连续作业优化等,对于理解和实施类似的自动化项目非常有帮助。同时,作者分享了许多宝贵的实践经验,有助于读者避开常见陷阱并顺利完成项目部署。

    信号处理领域中基于EMD及其改进方法的信号降噪与性能评估

    内容概要:本文详细介绍了如何利用经验模态分解(EMD)及其两种改进方法——集合经验模态分解(EEMD)和互补集合经验模态分解(CEEMDAN),来进行信号降噪。首先构建了一个由多个正弦波组成的混合信号并加入高斯噪声,随后使用三种方法对该带噪信号进行了分解,通过相关系数筛选有效的固有模态函数(IMF),最终重构信号并评估降噪效果。文中提供了详细的Python代码实现,包括信号生成、分解、重构以及性能评估的具体步骤。性能评估主要采用信噪比(SNR)和均方误差(MSE)作为衡量标准,结果显示CEEMDAN在降噪方面表现出色。 适合人群:从事信号处理领域的研究人员和技术人员,尤其是那些希望深入了解EMD系列算法及其应用的人群。 使用场景及目标:适用于需要对含噪信号进行预处理的各种应用场景,如机械故障诊断、生物医学工程等领域。目标是提高信号的质量,从而更好地支持后续的数据分析和决策制定。 其他说明:文中不仅提供了完整的代码实现,还讨论了不同参数的选择对降噪效果的影响,强调了实际应用中需要注意的问题,如计算资源限制、信号特性的考虑等。此外,作者鼓励读者尝试将仿真信号替换为实际数据,以便更好地理解和掌握这些方法的应用技巧。

    医学图像分割数据集:眼底血管图像语义分割数据集(约48张数据和标签)

    医学图像分割数据集:眼底血管图像语义分割数据集(约48张数据和标签) 【2类别的分割】:背景:0,1:眼底血管(具体参考classes文件) 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,34张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,10张左右图片和对应的mask图片 测试集:images图片目录+masks模板目录,4张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 医学图像分割网络介绍:https://blog.csdn.net/qq_44886601/category_12102735.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

    汽车工程中MATLAB/Simulink实现电动助力转向(EPS)系统的企业级量产模型

    内容概要:本文详细介绍了如何利用MATLAB和Simulink构建并优化电动助力转向(EPS)系统的企业级量产模型。首先探讨了随速助力曲线的设计,展示了如何通过车速和手力矩传感器输入计算助力扭矩。接着深入讲解了Simulink ASW(应用软件层)子系统的具体实现,包括移动平均滤波、助力特性模块、状态机设计以及回正控制等关键技术环节。文中还特别强调了处理现实世界非线性的挑战,如温度补偿、摩擦补偿和故障诊断方法。此外,讨论了手力闭环控制、PID调节、状态机设计以及摩擦模型简化等方面的技术细节,并提到了模型在环测试(MIL)、硬件在环测试(HIL)等验证手段。 适合人群:从事汽车电子控制系统开发的研究人员和技术工程师,尤其是对电动助力转向系统感兴趣的开发者。 使用场景及目标:适用于希望深入了解EPS系统内部工作原理及其优化方法的专业人士。主要目标是帮助读者掌握如何使用MATLAB/Simulink搭建高效可靠的EPS模型,从而应用于实际产品开发中。 其他说明:文章不仅提供了理论知识,还包括了许多实用的代码片段和实践经验分享,有助于读者更好地理解和应用相关技术。

    51单片机光照强度检测系统的实现与优化:滑动变阻器模拟光敏电阻的应用

    内容概要:本文详细介绍了基于51单片机的光照强度检测系统的设计与实现。主要采用滑动变阻器模拟光敏电阻,通过ADC0804进行模数转换,最终在LCD显示屏上显示光照强度等级。文中不仅提供了详细的硬件连接方法,如滑动变阻器与ADC0804的连接、单片机控制ADC的启动和读数等,还包括了完整的C语言源代码,涵盖了ADC读取、数据处理、阈值判断以及Protues仿真的具体步骤。此外,作者还分享了一些实用的调试技巧,如使用_nop_()指令保证信号稳定、加入滤波算法提高数据准确性等。 适合人群:具有一定单片机基础知识的学习者、电子爱好者、初学者及希望深入了解ADC工作的工程师。 使用场景及目标:①帮助读者掌握51单片机与ADC的工作原理及其应用;②提供一种低成本、易操作的光照检测解决方案;③通过实例演示,让读者学会如何进行硬件连接、编写相关程序并解决常见问题。 其他说明:文章强调了硬件连接的注意事项,如ADC0804的CLK引脚接法、滑动变阻器的设置范围等,并给出了具体的代码实现,便于读者理解和实践。同时,还提到了一些优化措施,如加入抗干扰设计、改进数据处理算法等,进一步提升了系统的性能。

    基于Comsol的三轴试验数值模拟:D-C、D-P、M-C准则的应用与实现

    内容概要:本文详细介绍了如何利用Comsol软件结合邓肯张(D-C)、德鲁克普拉格(D-P)和摩尔库伦(M-C)准则进行三轴试验的数值模拟。首先简述了各准则的基本概念及其适用范围,接着逐步讲解了在Comsol中创建土样模型、设定材料属性、施加边界条件和载荷的具体步骤。随后,文章展示了求解过程及结果分析方法,强调了通过数值模拟生成应力-应变曲线并与实际试验数据对比的重要性。此外,文中还提供了许多实用技巧,如参数设置、加载步控制、网格划分等,帮助提高模拟精度和效率。 适合人群:从事岩土工程研究的技术人员、研究生及以上学历的研究人员。 使用场景及目标:适用于需要深入了解土体力学特性的科研工作者,旨在通过数值模拟辅助实际三轴试验,减少实验成本并提升研究深度。具体目标包括掌握不同准则的特点及应用场景,学会使用Comsol进行三轴试验建模与仿真,能够根据模拟结果优化试验设计。 其他说明:文章不仅涵盖了理论知识和技术细节,还分享了许多实践经验,有助于读者更好地理解和应用所学内容。

Global site tag (gtag.js) - Google Analytics