第一次写博客,也就是记录一些自己对于JAVA的一些理解,不足之处,请大家指出,一起探讨。
这篇博文我打算说一下JAVA中锁,也就是Lock()的部分源码,这里我拿了一个Lock的具体实现类ReentrantLock来举例,但其实其他几个实现类大同小异。
附上一张流程图,来源我忘记,比较抱歉啊。
首先声明一下ReentrantLock类中的结构
其中有一个Sync静态内部类,该类继承自AbstractQuenedSynchrorizer
在AbstractQuenedSynchrorizer中,实现了大部分关于lock的操作,一般只留下tryAcquire()尝试获取锁,tryRelease()尝试释放锁,延迟到子类来完成,可以提高扩展性
而Sync也有两个子类,分别为NonfairSync与FairSync
那么从lock()入手。
lock()
先调了ReentrantLock中的lock()方法
public void lock() { sync.lock(); }
上面说过了,默认情况下调用lock()方法时调用的是非公平锁,也就是NonfairLock()类中的lock()
final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); }
这段代码比较好理解,重点放在else部分内,
首先compareAndSetState(0, 1)其实是一个CAS自旋,锁若是未被持有,默认是状态是0,持有后改为1,该方法内部调用的是unsafe的一个自旋,原理就是compareAndSetState(old, new)
若是old值等于期望值,那么将其设置为new值,试想,第一个现成进入if部分,显然可以成功获得锁,并且设置锁的状态为1,那么后面的现成进入后,若是第一个现成不释放锁,之后的现成调用compareAndSetState(0, 1)时,因为old是0,而期望值是1,不相符,所以不会获得该锁。
接下来就是else
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
这是AbstractQuenedSynchrorizer中的一个函数,由于尝试获取锁
tryAcquire(arg)显然是调用了NonfairLock类中的tryAcquire()函数,之前也提到了AbstractQuenedSynchrorizer将tryAcquire()尝试获取锁,tryRelease()尝试释放锁,延迟到子类来完成
那么看一看NonfairLock类中tryAcquire()的代码
protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(next); return true; } return false; }
getState()获取该锁的状态,初始值为0
也就是说若c==0,则表示该锁未被占用,那么使用compareAndSetState将其设置为1,同时将当前现成置标志位锁的拥有者。
这里其实很好的体现了什么叫非公平锁,试想,当一个现成尝试获取锁时失败看,进入else部分,else内部又让其尝试获取锁,假设之前占有锁的现成在此时释放了锁,那么也就会导致当前线程可以成功的获取到锁,注意,是在第一次获取锁失败之后的一次尝试获取,然后居然就获取成功了,也就是无视了等待队列中的现成,变成了后来者居上的局面。当然也不能说这种非公平方式的获取锁不好,恰恰是这样,大大提高了吞吐量。
那么接下来,若是c!=0呢,进入else部分,判断的条件是当前现成是否是锁的拥有者现成,如果是的话,只是简单的做了个状态+1而已。
若是以上两者情况都不属于,那么返回false,说明该现成当前来看确实无法获取到锁,准备将其插入到等待队列中。
在!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg)这个条件的前半部分已经处理完了,返回若是true,则当前线程获得了锁,否则,没有获得锁
进入后半个判断acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
这里可以看到其内部调了其他一个函数addWaiter(Node.EXCLUSIVE)
private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; }
这里需要说明一个问题,就是AbstractQuenedSynchrorizer在内部自己维护了一个双向链表,放的是未获得锁的等待线程
在看这段代码,将当前线程包装成一个Node节点。
获取到该链表的尾节点tail,若尾节点不为null,做一个尾节点与当前新节点的链接,同时compareAndSetTail(pred, node)将tail更新为新加入的节点
若是尾节点为null,调用enq()
private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
其大意为若尾节点为null,认为当前链表为空,那么构造一个头结点之后将新节点加入该链表
addWaiter()的核心目的就是将线程包装成节点后加入链表尾部
好了,最后调用if内部执行的函数selfInterrupt();
static void selfInterrupt() { Thread.currentThread().interrupt(); }
中断当前线程,至此一个完整的lock()走完。
接下去就是unlock()
相比之下unlock()比较好理解
public void unlock() { sync.release(1); }
调用了AbstractQuenedSynchrorizer内的
public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; }
类似的,看看tryRelease(arg)做了什么
protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; }
这里继续说明一下,前面说过AbstractQuenedSynchrorizer将tryAcquire()尝试获取锁,tryRelease()尝试释放锁,延迟到子类来完成,这也是一个体现
这里比较好理解,更新状态,若c==0,setExclusiveOwnerThread(null);设置当前锁未被线程锁拥有,同时设置状态为,若是c不为0,依次释放,知道其为0,然后将该锁的拥有者置为null
返回去看release,获取等待队列的头节点,h != null && h.waitStatus != 0这个条件判断的是头结点是否是一个有效节点,若是调用unparkSuccessor(h);
private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }
这段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。
总结一下,一般来说,在等待队列中的头结点并不是持有锁的节点,而是理解成即将持有锁的节点,因为当锁被释放之后,若是没有被不公平锁的抢占方式抢走了锁,他们头结点是具有获取锁资格的第一人选,若是头结点成功获取到锁,那么他会从链表中脱离,链表更新头结点。
在这里阻塞线程使用的park,同样是unsafe调用了本地方法park()
反之,唤醒线程使用的是unpark(),调用过程同park()
AbstractQuenedSynchrorizer做为一个同步器,是Lock具体实现类的基本功能提供类,像ReentrantLock只是做了该类的一个代理,以及将tryAquire()与tryRelease()的延迟实现。
在每个具体实现部分比如获取锁,释放锁等操作,都调用的CAS自旋操作。
这个我小小的说一下我对于这里为何要使用自旋的原因,首先Lock我们知道是一种轻量级的锁的实现,那么基于这种方式,若是我们想Synchorized方式那样,直接阻塞其余线程,等到有资源的时候再将其唤醒。
一个线程的调度是比较耗费CPU资源的尤其是我们在JVM内部还会实现一些类似于等待队列,运行队列,就绪队列这样的数据结构是,一个线程的切换,不仅仅是将其信息置入到内存,还需要将其在各个队列之间相互转换,就绪队列->运行队列等等。这种情况下,若是我们知道同步操作可以在非常短的时间内完成,那还有比较这样做频繁的线程切换么。
我们大可以将A线程保持其占有处理机的专状态,也就是让其一致在循环运行,循环体可以是空,也可以是一些无意义的指令,等到有资源时直接进入他的工作状态。虽然看起来占着处理机不放不是很好,但是从某种程度上来说,这样会比频繁的切换线程所造成的内存消耗来的更能让人接受。
当然这之间必然有一种平衡,究竟让线程空转多少时间比较合适呢,时间长了明显不合适,短了,又会造成白转的现像。所以这个我个人认为还是主要看运用的场合,若是同步操作很快能完成,那可以用CAS,否则的话,就看如何取舍了。
恩,那这篇差不多写到这里,有不足的地方欢迎大家提出一起研究。
相关推荐
三菱FX3G FX3S与四台E700变频器Modbus RTU通讯控制:正反转、频率设定与读取方案,三菱FX3G FX3S与四台E700变频器通讯:Modbus RTU协议实现正反转、频率设定与控制,快速反馈与教程包含,三菱FX3G FX3S 485协议通讯四台三菱E700变频器程序资料 三菱FX3G FX3S+485bd扩展,采用modbus rtu协议,crc校验,通讯控制四台E700变频器,可以实现正反转,停止,频率的设定,频率,电流等的读取。 反馈快,使用方便,包括教程,plc和触摸屏程序,变频器参数设置和接线,别的变频器支持rtu协议也可以实现。 ,三菱FX系列PLC; 485协议通讯; 变频器E700; 通讯控制; 参数设置; 教程。,三菱PLC控制E700变频器:485协议通讯与程序设置全解
1、文件内容:hyphen-nl-0.20050617-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/hyphen-nl-0.20050617-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
西门子S7-1200PLC结构化编程在5轴伺服项目中的应用:模块化设计、触摸屏控制及电气图纸实战解析,西门子S7-1200PLC结构化编程实现多轴联动与多种伺服功能应用:CAD图纸、PLC程序和触摸屏程序协同运作。,西门子S7-1200PLC结构化编程5轴伺服项目 ,包含plc程序、威纶通触摸屏程序、cad电气图纸。 可以实现以下功能,规格有: 1.三轴机械手X轴-Y轴-Z轴联动取放料PTO脉冲定位控制台达B2伺服 2.台达伺服速度模式应用+扭矩模式应用实现收放卷 3.程序为结构化编程,每一功能为模块化设计,功能:自动_手动_单步_暂停后原位置继续运行_轴断电保持_报警功能_气缸运行及报警. 4.每个功能块可以无数次重复调用,可以建成库,用时调出即可 5.上位机采样威纶通触摸屏 6.参考本案例熟悉掌握结构化编程技巧,扩展逻辑思维。 博图14以上都可以打开 ,核心关键词:西门子S7-1200PLC; 结构化编程; 5轴伺服项目; PLC程序; 威纶通触摸屏程序; CAD电气图纸; 三轴机械手; PTO脉冲定位控制; 台达B2伺服; 速度模式应用; 扭矩模式应用; 模块化设计; 轴断电保
情感分析算法在多个领域有着广泛的应用场景和丰富的案例
基于MATLAB仿真的MMC整流站与逆变站柔性互联技术研究:快速工况仿真与环流抑制控制,基于MATLAB仿真的MMC整流站与逆变站运行分析及四端柔性互联工况仿真模拟研究,21电平MMC整流站、MMC逆变站、两端柔性互联的MATLAB仿真模型,4端柔性互联、MMC桥臂平均值模型、MMC聚合模型(四端21电平一分钟即能完成2s的工况仿真) 1-全部能正常运行,图四和图五为仿真波形 2-双闭环控制,逆变站PQ控制,整流站站Udc Q控制 3-最近电平逼近调制+子模块电容充电 4-环流抑制控制 ,1. 21电平MMC整流站; 2. MMC逆变站; 3. MATLAB仿真模型; 4. 两端柔性互联; 5. 桥臂平均值模型; 6. 聚合模型; 7. 双闭环控制; 8. 最近电平逼近调制; 9. 子模块电容充电; 10. 环流抑制控制。,基于柔性互联的MMC系统仿真模型:多电平控制与环流抑制研究
有效应对网络舆情教育培训PPT.pptx
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
淘宝买的,直接分享给大家了,没有测试环境,也没有办法去测。但我想,他应该是可以用的
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
ACM比赛经验分享(基础知识与算法准备等)
运行GUI版本,可二开
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
该是指包含恶意网址的数据库或数据集,它通常被用于网络安全研究、恶意软件检测、网络欺诈防范等领域。研究人员和安全专家会利用这个数据集来分析恶意网址的特征、行为模式,进而开发出相应的检测算法和防护措施,以识别和阻止恶意网址对用户设备和网络环境造成的潜在威胁。该数据集包含约 651,191 条经过标记的 URL,涵盖了四种主要类型:良性(Benign)、篡改(Defacement)、钓鱼(Phishing)和恶意软件(Malware)。其中,良性 URL 占据了约 428,103 条,篡改 URL 有 96,457 条,钓鱼 URL 为 94,111 条,而恶意软件 URL 则有 32,520 条。该数据集的显著特点是其多类别分类的全面性,不仅包括常见的恶意 URL 类型,还涵盖了大量良性 URL,使得研究人员能够更全面地理解和区分不同类型的 URL。此外,数据集以原始的 URL 形式提供,研究人员可以根据需要提取和创建特征,而不受预设特征的限制。
字卡v4.3.4 原版 三种UI+关键字卡控制+支持获取用户信息+支持强制关注 集卡模块从一开始的版本到助力版本再到现在的新规则版本。 集卡模块难度主要在于 如何控制各种不同的字卡组合 被粉丝集齐的数量。 如果不控制那么一定会出现超过数量的粉丝集到指定的字卡组合,造成奖品不够的混乱,如果大奖价值高的话,超过数量的粉丝集到大奖后,就造成商家的活动费用超支了。我们冥思苦想如何才能限制集到指定字卡组合的粉丝数,后我们想到了和支付宝一样的选一张关键字卡来进行规则设置的方式来进行限制,根据奖品所需的关键字卡数,设定规则就可以控制每种奖品所需字卡组合被粉丝集到的数量,规则可以在活动进行中根据需要进行修改,活动规则灵活度高。新版的集卡规则,在此次政府发布号的活动中经受了考验,集到指定字卡组合的粉丝没有超出规则限制。有了这个规则限制后,您无需盯着活动,建好活动后就无人值守让活动进行就行了,您只需要时不时来看下蹭蹭上涨的活动数据即可。 被封? 无需担心,模块内置有防封功能,支持隐藏主域名,显示炮灰域名,保护活动安全进行。 活动准备? 只需要您有一个认证服务号即可,支持订阅号借用认证服务号来做活动。如果您
DSP28035的CAN通信升级方案:包括源码、测试固件与C#上位机开发,支持周立功USBCAN-II兼容盒及BootLoader闪烁指示,DSP28035的CAN升级方案及详细配置说明:使用新动力开发板与C#上位机软件实现固件升级,涉及用户代码、BootLoader代码及硬件连接细节,DSP28035的can升级方案 提供源代码,测试用固件。 上位机采用c#开发。 说明 一、介绍 1、测试平台介绍:采用M新动力的DSP28035开发板,CAN口使用GPIO30\31。波特率为500K。 2、28035__APP为测试用的用户代码,ccs10.3.1工程,参考其CMD配置。 3、28035_Bootloader_CAN为bootloader源代码,ccs10.3.1工程; 4、SWJ为上位机,采用VS2013开发,C#语言。 5、测试使用的是周立功的USBCAN-II,can盒,如果用一些国产可以兼容周立功的,则更这里面的ControlCAN.dll即可。 6、升级的app工程需要生成hex去升级,具体参考我给的工程的设置。 7、BootLoader代码,只有D400这一个灯1s闪烁一
基于Matlab的数字验证码识别系统:预处理与不变矩算法的实践应用及GUI界面构建,基于MATLAB不变矩算法的数字验证码识别系统设计与实现,基于matlab不变矩算法实现数字验证码 过程:先对验证图像进行去噪、定位、归一化等预处理,然后计算待识别数字的不变矩,再进行特征匹配,得到识别结果。 以Matlab软件为开发平台来进行设计实现及仿真,并构建相应的GUI界面。 实验结果表明利用不变矩在识别数字验证码方面具有可行性。 ,关键词:Matlab;不变矩算法;数字验证码;预处理;特征匹配;GUI界面;实验验证;可行性。,Matlab实现数字验证码识别:预处理与不变矩算法的GUI仿真
基于STM32F103的磁编码器通讯方案:原理图、PCB设计与源码实现,附多摩川协议手册解析,基于STM32F103的精准多摩川绝对值磁编码器通讯解决方案:原理图、PCB设计与源码实践手册,完整包含多摩川协议解析,基于STM32F103的多摩川绝对值磁编码器通讯方案 包含:原理图,PCB,源码,多摩川协议手册 ,核心关键词:STM32F103;多摩川绝对值磁编码器;通讯方案;原理图;PCB;源码;多摩川协议手册;,基于STM32F103的绝对值磁编码器通讯方案:原理图PCB与源码解析,附多摩川协议手册
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
php项目之学生成绩查询系统源码,项目仅供学习参考使用