练习题都摘抄自网络,。
数据是大家都熟悉的 带emp,department表那个数据库。
是oracle自带的,地址为:
--1、列出至少有一个雇员的所有部门
select distinct dname from dept where deptno in (select distinct deptno from emp);
--2、列出薪金比"SMITH"多的所有雇员
select ename,sal from emp where sal>(select sal from emp where ename=upper('smith'));
--3、列出所有雇员的姓名及其直接上级的姓名
select e.ename,m.ename from emp e,emp m where e.mgr=m.empno(+);
--4、列出入职日期早于其直接上级的所有雇员
select ename from emp e where hiredate<(select hiredate from emp where empno=e.mgr);
我尽然忘记了在子select语句里面可以使用外面的字段
--5、列出部门名称和这些部门的雇员,同时列出那些没有雇员的部门
select dname,ename from dept d
left join emp e
on d.deptno=e.deptno;
select dname ,ename from dept , emp
where dept.deptno = emp.deptno(+);
--6、列出所有“CLERK”(办事员)的姓名及其部门名称
select ename,dname from emp e left join dept d on e.deptno=d.deptno where job=upper('clerk');
select ename,dname
from emp ,dept
where emp.job = upper('clerk') and emp.deptno = dept.deptno
--7、列出各种工作类别的最低薪金,显示最低薪金大于1500的记录
select job,min(sal) from emp group by job having min(sal)>1500;
--8、列出从事“SALES”(销售)工作的雇员的姓名,假定不知道销售部的部门编号
select ename from emp where deptno = (select deptno from dept where dname=upper('sales'))
--9、列出薪金高于公司平均水平的所有雇员
select ename from emp where sal>(select avg(sal) from emp);
--10、列出与“SCOTT”从事相同工作的所有雇员
select ename from emp where job=(select job from emp where ename=upper('scott'));
--11、列出某些雇员的姓名和薪金,条件是他们的薪金等于部门30中任何一个雇员的薪金
select ename,sal from emp where sal in (select sal from emp where deptno=30);
--12、列出某些雇员的姓名和薪金,条件是他们的薪金高于部门30中所有雇员的薪金
select ename ,sal from emp where sal>(select max(sal) from emp where deptno=30);
--13、列出每个部门的信息以及该部门中雇员的数量
select d.deptno,dname,count(ename) from dept d left join emp e on (d.deptno=e.deptno)
group by d.deptno,dname
select dept.deptno , dept.dname ,count(ename) from emp ,dept
where emp.deptno(+) = dept.deptno
group by dept.deptno,dept.dname
--14、列出所有雇员的雇员名称、部门名称和薪金
Select e.ename,d.dname,e.sal from emp e left join dept d on (d.deptno=e.deptno)
--15、列出从事同一种工作但属于不同部门的雇员的不同组合
Select tba.ename,tbb.ename,tba.job,tbb.job,tba.deptno,tba.deptno
From emp tba,emp tbb
Where tba.job=tbb.job and tba.deptno<>tbb.deptno
--16、列出分配有雇员数量的所有部门的详细信息,即使是分配有0个雇员
Select dept.deptno,dname,loc,count(empno)
From dept,emp
Where dept.deptno=emp.deptno(+)
Group by dept.deptno,dname,loc
--17、列出各种类别工作的最低工资
Select min(sal) from emp group by job
--18、列出各个部门的MANAGER(经理)的最低薪金
Select deptno,min(sal) from emp where job=upper(‘manager’) group by deptno
--19、列出按年薪排序的所有雇员的年薪
select (sal+nvl(comm,0))*12 as avn from emp order by avn
--20、列出薪金水平处于第四位的雇员
Select * from (Select ename,sal, rank() over (order by sal desc) as grade from emp) where grade=4
同样iteye上的博客对 rank() over(partition)的比较详细的介绍
http://piaoling.iteye.com/blog/465703
1,2,2,4,5,6.。。。。这是rank()的形式
1,2,2,3,4,5,。。。。这是dense_rank()的形式
1,2,3,4,5,6.。。。。。这是row_number()涵数形式
iteye上的另外一个oracle练习题,有44题
http://wjuan222-gmail-com.iteye.com/blog/765883

- 大小: 40.2 KB
分享到:
相关推荐
内容概要:Elasticsearch是一款强大且灵活的搜索和数据分析工具。文中介绍了其核心技术如分布式存储、实时搜索、全文检索、数据分析等。通过对基础概念的学习,如索引、文档、类型、映射的理解,结合实战案例解析,重点展示了Elasticsearch在电商业务商品搜索引擎构建以及高效日志管理系统部署方面的实际运用方法和技术细节。此外,围绕性能优化展开了讨论,强调了诸如合理的分片和副本配置、有效运用内部缓存机制和精心规划集群资源配置等一系列措施的重要性。 适合人群:从事IT行业的中级及以上技术水平从业者,尤其是那些负责大数据处理、分布式系统的架构师及工程师。 使用场景及目标:①希望掌握利用Elasticsearch快速实现高效的搜索与分析应用的方法论和技术路径;②旨在通过实例学习到针对不同应用场景(如电商网站、日志分析)如何正确配置系统参数、优化集群表现,进而达成更好的用户体验或运营效率;③寻求提升系统稳定性、可靠性并解决可能出现的问题。 其他说明:本文不仅仅讲述了理论知识,还有详实的具体操作指南,帮助读者在实践中深入理解Elasticsearch的能力,并鼓励他们在自己的项目中积极探索更
基于Matlab的双三方演化博弈与Lotka-Volterra模型稳定点分析、相位图绘制与仿真代码实现,基于Matlab的双三方演化博弈与Lotka-Volterra模型:稳定点分析、相位图绘制与仿真代码实践,matlab:双或三方演化博弈,lotka-Volterra 1.双方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真图代码 2.三方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真图代码3.lotka-Volterra模型 ,核心关键词:Matlab; 双或三方演化博弈; 稳定点分析; 相位图; 仿真图代码; Lotka-Volterra模型,MATLAB仿真:双三方演化博弈与Lotka-Volterra模型的稳定点分析与相位图绘制
【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip 基于词袋模型及神经网络的文本分类算法新版源码+说明+数据.zip
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
COMSOL模拟放电电极击穿空气过程:电场分布与击穿间隙电压计算分析,COMSOL模拟放电电极击穿空气过程:电场分布与击穿间隙电压计算分析,comsol放电电极击穿空气模拟,计算击穿间隙的电压,周围附近的电场 ,关键词:COMSOL放电电极;击穿空气模拟;计算;击穿间隙电压;周围附近电场;电场分布。,COMSOL模拟放电电极击穿空气过程,计算电压与电场分布分析
高压柔性输电系统:6脉冲与12脉冲晶闸管控制的HVDC仿真模型详细说明文档,高压柔性输电系统:6脉冲与12脉冲晶闸管控制的HVDC仿真模型详解说明文档,高压柔性输电系统6脉冲,12脉冲晶闸管控制HVDC的仿真模型,说明文档 ,高压柔性输电系统; 6脉冲HVDC; 12脉冲晶闸管控制; 仿真模型; 说明文档,高压柔性输电系统仿真模型:6/12脉冲晶闸管控制HVDC说明文档
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
近年来,文本驱动的视频生成 (Brooks 等人 2024;Hunyuan 2024) 取得了显著增长。然而,评估这些文本驱动的AI生成视频带来了独特且日益严峻的挑战。这些挑战主要源于两个关键问题:(1)需要精确的视频与文本对齐,特别是在处理复杂和长文本提示时;(2)出现了一些在自然生成视频中不常见的独特失真现象,例如不规则运动模式和物体。 随着新一代视频模型的发展,这些挑战变得更加突出。这些新一代模型以 Sora (Brooks 等人 2024) 的出现为标志,在生成质量上相比以往模型有了显著提升,其特点在于丰富的细节和内容,如 Kling (快手 2024) 、Gen-3-alpha (Runway 2024) 、Vidu (圣书 2024) 等。与之前的 AIGC 视频相比,这些模型支持 更长且更复杂的文本提示(通常超过200个字符),以及更复杂的运动模式和更长的持续时间(通常超过5秒,帧率为24帧每秒) 。如图 [fig:1] 所示,这些丰富的内容对评估者的理解视频动态及其与复杂文本语义关系的能力提出了更高的要求。 为了应对这一问题,我们引入了 Conten
在B站看黑马程序员,自学python,整理的个人笔记
传统永磁同步电机FOC离散化Simulink模型实践指南:高效性能与传递函数离散化推导文档附赠,传统永磁同步电机FOC离散化Simulink模型实战解析及传递函数离散化推导入门指南,传统永磁同步电机的FOC离散化simulink模型,效果较好。 附赠传递函数离散化推导的文档,初学者可以入手。 ,传统永磁同步电机; FOC离散化; Simulink模型; 传递函数离散化; 推导文档。,FOC离散化Simulink模型:永磁同步电机高效控制与传递函数离散化解析
内容概要:本文由360集团创始人周鸿祎撰写,深入探讨了DeepSeek这一前沿AI技术及其对各行各业所带来的巨大机遇。文中详细阐述了人工智能的发展历程,特别是大模型的演进,并指出了DeepSeek如何在技术和用户体验方面取得重大突破,引领新的工业革命,以及中国在该领域的创新和发展前景。同时介绍了如何借助DeepSeek实现具体的企业应用,涵盖知识库建设、智能体开发等多个方面的实践经验。 适用人群:针对政府机构、企业和创新创业者的高级管理层和技术领导者,旨在提供对当前AI前沿技术和未来发展策略的理解。 使用场景及目标:适用于希望通过先进技术提升竞争力的单位或个人;目的在于引导读者建立正确的AI意识,了解最新的技术动向和实施路径,为未来的战略规划打下坚实的基础。 其他说明:文档还强调了在全球范围内争夺大模型主导地位的竞争环境下,中国企业应该如何抓住机遇实现快速发展,以及如何克服现有挑战,确保安全可靠的应用。
APP测试基础流程
建设工程管理数字孪生平台解决方案.docx
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
串口助手
深度学习-卷积神经网络的猫狗数据集
基于Python的Django-vue社会主义核心价值观视角下电商平台型社会责任评价研究源码-演示视频 项目关键技术 开发工具:Pycharm 编程语言: python 数据库: MySQL5.7+ 后端技术:Django 前端技术:HTML 关键技术:HTML、MYSQL、Python 数据库工具:Navicat、SQLyog
1、以上文章可用于参考,请勿直接抄袭,学习、当作参考文献可以,主张借鉴学习 2、资源本身不含 对应项目代码,如需完整项目源码,请私信博主获取
scala-intellij-bin-2024.1.1.zip