`
hupy
  • 浏览: 189744 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

隐马尔科夫模型(HMM)

阅读更多

  介绍

我们通常都习惯寻找一个事物在一段时间里的变化规律。在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等。一个最适用的例子就是天气的预测。

首先,本文会介绍声称概率模式的系统,用来预测天气的变化

然后,我们会分析这样一个系统,我们希望预测的状态是隐藏在表象之后的,并不是我们观察到的现象。比如,我们会根据观察到的植物海藻的表象来预测天气的状态变化。

最后,我们会利用已经建立的模型解决一些实际的问题,比如根据一些列海藻的观察记录,分析出这几天的天气状态。

Generating Patterns

有两种生成模式:确定性的和非确定性的。

确定性的生成模式 :就好比日常生活中的红绿灯,我们知道每个灯的变化规律是固定的。我们可以轻松的根据当前的灯的状态,判断出下一状态。

 

 

 

非确定性的生成模式: 比如说天气晴、多云、和雨。与红绿灯不同,我们不能确定下一时刻的天气状态,但是我们希望能够生成一个模式来得出天气的变化规律。我们可以简单的假设当前 的天气只与以前的天气情况有关,这被称为马尔科夫假设。虽然这是一个大概的估计,会丢失一些信息。但是这个方法非常适于分析。

马尔科夫过程就是当前的状态只与前n个状态有关。这被称作n阶马尔科夫模型。最简单的模型就当n=1时的一阶模型。就当前的状态只与前一状态有关。(这里要注意它和确定性生成模式的区别,这里我们得到的是一个概率模型)。下图是所有可能的天气转变情况:

 

 

 

对于有M个状态的一阶马尔科夫模型,共有M*M个状态转移。每一个状态转移都有其一定的概率,我们叫做转移概率,所有的转移概率可以用一个矩阵表示。在整个建模的过程中,我们假设这个转移矩阵是不变的。

 

 

 

该矩阵的意义是:如果昨天是晴,那么今天是晴的概率为0.5,多云的概率是0.25,雨的概率是0.25。注意每一行和每一列的概率之和为1。

另外,在一个系统开始的时候,我们需要知道一个初始概率,称为P 向量。

 

到现在,我们定义了一个一阶马尔科夫模型,包括如下概念:

状态:晴、多云、雨

状态转移概率

初始概率

 

马尔科夫模型也需要改进!

当一个隐士不能通过直接观察天气状态来预测天气时,但他有一些水藻。民间的传说告诉我们水藻的状态与天气有一定的概率关系。也就是说,水藻的状态与 天气时紧密相关的。此时,我们就有两组状态:观察状态(水藻的状态)和隐含状态(天气状态)。因此,我们希望得到一个算法可以为隐士通过水藻和马尔科夫过 程,在没有直接观察天气的情况下得到天气的变化情况。

更容易理解的一个应用就是语音识别,我们的问题定义就是如何通过给出的语音信号预测出原来的文字信息。在这里,语音信号就是观察状态,识别出的文字就是隐含状态。

这里需要注意的是,在任何一种应用中,观察状态的个数与隐含状态的个数有可能不一样的。下面我们就用隐马尔科夫模型HMM来解决这类问题。

HMM

下图是天气例子中两类状态的转移图,我们假设隐状态是由一阶马尔科夫过程描述,因此他们相互连接。

隐状态和观察状态之间的连线表示:在给定的马尔科夫过程中,一个特定的隐状态对应的观察状态的概率。我们同样可以得到一个矩阵:
注意每一行(隐状态对应的所有观察状态)之和为1。
到此,我们可以得到HMM的所有要素:两类状态和三组概率
 
两类状态:观察状态和隐状态;
三组概率:初始概率、状态转移概率和两态对应概率(confusion matrix)

HMM 定义

HMM是一个三元组 (P ,A,B).

P : the vector of the initial state probabilities;

 A : the state transition matrix;

 B : the confusion matrix;

这其中,所有的状态转移概率和混淆概率在整个系统中都是一成不变的。这也是HMM中最不切实际的假设。

HMM的应用

有三个主要的应用:前两个是模式识别后一个作为参数估计

(1) 评估

根据已知的HMM找出一个观察序列的概率。

这类问题是假设我们有一系列的HMM模型,来描述不同的系统(比如夏天的天气变化规律和冬天的天气变化规律),我们想知道哪个系统生成观察状态序列 的概率最大。反过来说,把不同季节的天气系统应用到一个给定的观察状态序列上,得到概率最大的哪个系统所对应的季节就是最有可能出现的季节。(也就是根据 观察状态序列,如何判断季节)。在语音识别中也有同样的应用。

我们会用forward algorithm 算法来得到观察状态序列对应于一个HMM的概率。

(2) 解码

根据观察序列找到最有可能出现的隐状态序列

回想水藻和天气的例子,一个盲人隐士只能通过感受水藻的状态来判断天气状况,这就显得尤为重要。我们使用viterbi algorithm 来解决这类问题。

viterbi算法也被广泛的应用在自然语言处理领域。比如词性标注。字面上的文字信息就是观察状态,而词性就是隐状态。通过HMM我们就可以找到一句话上下文中最有可能出现的句法结构。

(3) 学习

从观察序列中得出HMM

这是最难的HMM应用。也就是根据观察序列和其代表的隐状态,生成一个三元组HMM (P ,A,B)。使这个三元组能够最好的描述我们所见的一个现象规律。

我们用forward-backward algorithm 来解决在现实中经常出现的问题--转移矩阵和混淆矩阵不能直接得到的情况。

总结 HMM可以解决的三类问题

  1. Matching the most likely system to a sequence of observations -evaluation, solved using the forward algorithm;
  2. determining the hidden sequence most likely to have generated a sequence of observations - decoding, solved using the Viterbi algorithm;
  3. determining the model parameters most likely to have generated a sequence of observations - learning, solved using the forward-backward algorithm.

    找到观察序列的概率  

    Finding the probability of an observed sequence

    1、穷举搜索方法

    对于水藻和天气的关系,我们可以用穷举搜索方法的到下面的状态转移图(trellis):

    图中,每一列于相邻列的连线由状态转移概率决定,而观察状态和每一列的隐状态则由混淆矩阵决定。如果用穷举的方法的到某一观察状态序列的概率,就要求所有可能的天气状态序列下的概率之和,这个trellis中共有3*3=27个可能的序列。

    Pr(dry,damp,soggy | HMM) = Pr(dry,damp,soggy | sunny,sunny,sunny) + Pr(dry,damp,soggy | sunny,sunny ,cloudy) + Pr(dry,damp,soggy | sunny,sunny ,rainy) + . . . . Pr(dry,damp,soggy | rainy,rainy ,rainy)

    可见计算复杂度是很大,特别是当状态空间很大,观察序列很长时。我们可以利用概率的时间不变性 解决复杂度。
     
    2、采用递归方法降低复杂度
    我们采用递归的方式计算观察序列的概率,首先定义部分概率 为到达trellis中某一中间状态的概率。在后面的文章里,我们把长度为T的观察状态序列表示为:
    Y{k{1}}, Y{k{2}}, .... , Y{k{T}}
     
    2a. Partial probabilities, (a 's)
    在计算trellis中某一中间状态的概率时,用所有可能到达该状态的路径之和表示。
    比如在t=2时间,状态为cloudy的概率可以用下面的路径计算:
    a t ( j ) 表示在时间t时 状态j的部分概率。计算方法如下:
    a t ( j )= Pr( observation | hidden state is j ) * Pr(all paths to state j at time t)
    最后的观察状态的部分概率表示,这些状态所经过的所有可能路径的概率。比如:
    这表示最后的部分概率的和即为trellis中所有可能路径的和,也就是当前HMM下观察序列的概率。
    Section 3  会给出一个动态效果介绍如何计算概率。
     
    2b.计算初始状态的部分概率
    我们计算部分概率的公式为:
    a t ( j )= Pr( observation | hidden state is j ) x Pr(all paths to state j at time t)
    但是在初始状态,没有路径到达这些状态。那么我们就用probability乘以associated observation probability计算:
    formula
    这样初始时刻的状态的部分概率就只与其自身的概率和该时刻观察状态的概率有关.  

Forward Algorithm

书接上文,前一话我们讲到了Forward Algorithm中初始状态的部分概率的计算方法。这次我们继续介绍。

2c.如何计算t>1时刻的部分概率

回忆一下我们如何计算部分概率:

a t ( j )= Pr( observation | hidden state is j ) * Pr(all paths to state j at time t)

我们可知(通过递归)乘积中第一项是可用的。那么如何得到Pr(all paths to state j at time t) 呢?

为了计算到达一个状态的所有路径的概率,就等于每一个到达这个状态的路径之和:

随着序列数的增长,所要计算的路径数呈指数增长。但是在t时刻我们已经计算出所有到达某一状态的部分概率,因此在计算t+1时刻的某一状态的部分概率时只和t时刻有关。
[Formula]
这个式子的含义就是恰当的观察概率(状态j下,时刻t+1所真正看到的观察状态的概率)乘以此时所有到达该状态的 概率和(前一时刻所有状态的概率与相应的转移概率的积)。因此,我们说在计算t+1时刻的概率时,只用到了t时刻的概率。这样我们就可以计算出整个观察序 列的概率。
 
2d.复杂度比较
对于观察序列长度T,穷举法的复杂度为T的指数级;而Forward Algorithm的复杂度为T的线性。
=======================================================
最后我们给出Forward Algorithm的完整定义
We use the forward algorithm to calculate the probability of a T long observation sequence;

[Formula]

where each of the y is one of the observable set. Intermediate probabilities (a 's) are calculated recursively by first calculating a for all states at t=1.

[Formula]

Then for each time step, t = 2, ..., T, the partial probability a is calculated for each state;  

[Formula]

that is, the product of the appropriate observation probability and the sum over all possible routes to that state, exploiting recursion by knowing these values already for the previous time step. Finally the sum of all partial probabilities gives the probability of the observation, given the HMM, l .  

[Formula]

 =======================================================

我们还用天气的例子来说明如何计算t=2时刻,状态CLOUDY的部分概率
怎么样?看到这里豁然开朗了吧。要是还不明白,我就.....................还有办法,看个动画效果:
参数定义:
最后记住我们使用这个算法的目的(没有应用任何算法都是垃圾),从若干个HMM模型中选出一个最能够体现给定的观察状态序列的模型(概率最大的那个)。

Viterbi Algorithm

找到可能性最大的隐含状态序列

多数情况下,我们都希望能够根据一个给定的HMM模型,根据观察状态序列找到产生这一序列的潜在的隐含状态序列。

1、穷举搜索方法

 

 

我们可以通过穷举的方式列出所有可能隐含状态序列,并算出每一种隐状态序列组合对应的观察状态序列的概率。概率最大的那个组合对应的就是最可能的隐状态序列组合。

Pr(observed sequence | hidden state combination).

比如说上图中的trellis中,最有可能的隐状态序列是使得概率:

Pr(dry,damp,soggy | sunny,sunny,sunny), Pr(dry,damp,soggy | sunny,sunny,cloudy), Pr(dry,damp,soggy | sunny,sunny,rainy), . . . . Pr(dry,damp,soggy | rainy,rainy,rainy)

得到最大值的序列。

同样这种穷举法的计算量太大了。为了解决这个问题,我们可以利用和Forward algorithm一样的原理--概率的时间不变性来减少计算量。

2.用递归方式减少复杂度

在给定的观察序列和HMM模型下,我们用一种递归的方式找到最有可能的隐状态序列。同样我们滴定部分概率,即在trellis中到达某一中间状态的概率。然后介绍如何在初始时刻t=1和t>1的时刻分别求解这个部分概率。但要注意,这里的部分概率是到达某一中间状态的概率最大的路径而不是所有概率之和。

2.1部分概率和部分最优路径

看如下trellis

 

[Picture of trellis]
 

对于trellis中的每个中间状态和结束状态,都存在一条到达它的最优路径。他可能是下图这样:

 

[Picture]
 

我们这些路径为部分最优路径,每一条 部分最优路径都对应一个关联概率--部分概率d 。与Forward algorithm不同d 是最有可能到达该状态的一条 路径的概率。

 d (i,t)是所有序列中在t时刻以状态i终止的最大概率。当然它所对应那条路径就是部分最优路径。  d (i,t)对于每个i,t都是存在的。这样我们就可以在时间T(序列的最后一个状态)找到整个序列的最优路径。

2b. 计算 d 's 在t = 1的初始值

由于在t=1不存在任何部分最优路径,因此可以用初始状态P 向量协助计算。

[Formula]

这一点与Forward Algorithm相同

2c. 计算 d 's 在t > 1 的部分概率

同样我们只用t-1时刻的信息来得到t时刻的部分概率。

 

[Picture]

由此图可以看出到达X的最优路径是下面中的一条:

(sequence of states), . . ., A, X                                (sequence of states), . . ., B, X or (sequence of states), . . ., C, X

我们希望找到一条概率最大的。回想马尔科夫一阶模型的假设,一个状态之和它前一时刻的状态有关。

Pr (most probable path to A) . Pr (X | A) . Pr (observation | X)

因此到达X的最大概率就是:

[Formula]  

其中第一部分由t-1时刻的部分概率得到,第二部分是状态转移概率,第三部分是混淆矩阵中对应的概率。

(Viterbi Algorithm 待续)

 

Viterbi Algorithm

书接前文,viterbi算法已经基本成形......

一般化上一篇最后得到的公式我们可以把概率的求解写成:

[Formula]

2d. 反向指针, f 's

考虑下面trellis

 

[Trellis]

现在我们可以得到到达每一个中间或者终点状态的概率最大的路径。但是我们需要采取一些方法来记录这条路径。这就需要在每个状态记录得到该状态最优路径的前一状态。记为:

[Formula]

这样argmax操作符就会选择使得括号中式子最大的索引j。

如果有人问,为什么没有乘以混淆矩阵中的观察概率因子。这是因为我们关心的是在到达当前状态的最优路径中,前一状态的信息,而与他对应的观察状态无关。

2e. viterbi算法的两个优点

1)与Forward算法一样,它极大的降低了计算复杂度

2)viterbi会根据输入的观察序列,“自左向右”的根据上下文给出最优的理解。由于viterbi会在给出最终选择前考虑所有的观察序列因素,这样就避免了由于突然的噪声使得决策原理正确答案。这种情况在真实的数据中经常出现。

==================================================

下面给出viterbi算法完整的定义

1. Formal definition of algorithm

The algorithm may be summarised formally as:

For each i,, i = 1, ... , n, let :

[Formula]

- this intialises the probability calculations by taking the product of the intitial hidden state probabilities with the associated observation probabilities.

For t = 2, ..., T, and i = 1, ... , n let :

[Formula]

- thus determining the most probable route to the next state, and remembering how to get there. This is done by considering all products of transition probabilities with the maximal probabilities already derived for the preceding step. The largest such is remembered, together with what provoked it.

Let :

[Formula]

- thus determining which state at system completion (t=T) is the most probable.

For t = T - 1, ..., 1

Let :

[Formula]

- thus backtracking through the trellis, following the most probable route. On completion, the sequence i1 ... iT will hold the most probable sequence of hidden states for the observation sequence in hand.

==================================================

我们还用天气的例子来说明如何计算状态CLOUDY的部分概率,注意它与Forward算法的区别

[Picture]
还是那句话:
怎么样?看到这里豁然开朗了吧。要是还不明白,我就.....................还有办法,看个动画效果:
参数定义:
别忘了,viterbi算法的目的是根据给定的观察状态序列找出最有可能的隐含状态序列,别忘了viterbi算法不会被中间的噪音所干扰。

尾声

HMM 的第三个应用就是learning,这个算法就不再这里详述了,并不是因为他难于理解,而是它比前两个算法要复杂很多。这个方向在语音处理数据库上有重要 的地位。因为它可以帮助我们在状态空间很大,观察序列很长的环境下找到合适HMM模型参数:初始状态、转移概率、混淆矩阵等。

好了,我们终于可以对HMM做一个阶段性的总结了。通过这个系列的自学过程,我相信各位已经和我一样对HMM的概念和应用有了一个初步的了解。这里我们考虑的都是一阶马尔科夫过程。HMM在语音识别和NLP方面都有很深入的应用。

简单说说我学习HMM的初衷,在科研过程中遇到了reranking的问题,候选一直都是别人为我生成的,处于好奇, 终于决定自己也研究一下,大家都知道,reranking是需要产生N-best的候选,既然是N-best,那么viterbi算法就只能生成一条最好 的路径,其他的该怎么办呢?原来在实际应用过程中,通常是把viterbi decoding与另一种称为stack decoding的算法联合使用(当然A*算法也可以)产生多个候选。前面我们已经对A*算法作了介绍,在今后的日子里,如果我有时间也会把stack decoding向大家介绍。(希望不要等太长时间)

 

本文来自:崔晓源博客

分享到:
评论
1 楼 hjk685 2010-12-16  
看起来很复杂,我以后好好研究一下。

相关推荐

    隐马尔科夫模型HMM自学最好范例 pdf文档

    ### 隐马尔科夫模型HMM自学最佳范例 #### 一、引言 隐马尔科夫模型(Hidden Markov Model, HMM)作为一种统计模型,在多个领域都有着广泛的应用,包括但不限于语音识别、自然语言处理、生物信息学等。本文档旨在...

    隐马尔科夫模型HMM

    隐马尔科夫模型(HMM)是一种统计建模技术,用于处理时序数据,尤其在自然语言处理、语音识别和生物信息学等领域有广泛应用。HMM 的核心思想是假设系统内部存在一些不可直接观测的状态,这些状态按照马尔科夫过程...

    隐马尔科夫模型HMM详解及其java实现

    详细的讲解了HMM模型,以及前向算法,维特比算法,前向后向算法。 2.HMM模型的java代码实现,实现了前向算法,后向算法和维特比算法。代码注释清楚,便于阅读。 3.提供了两篇关于解递归式的论文,提供了求解递归算法...

    python实现隐马尔科夫模型HMM

    隐马尔科夫模型(Hidden Markov Model,HMM)是一种统计模型,用于描述一个含有隐含未知参数的马尔科夫过程。在HMM中,系统被认为是一个马尔科夫过程,但是该过程不直接可观测,能够观测到的只是与之相关的另一系列...

    Matlab 隐马尔科夫模型HMM

    隐马尔科夫模型(Hidden Markov Model, HMM)是一种在统计建模中用于处理序列数据的强大工具,尤其在自然语言处理、生物信息学、语音识别等领域有着广泛应用。Matlab作为一款强大的数学计算软件,提供了丰富的工具箱...

    隐马尔科夫模型HMM自学

    隐马尔科夫模型(Hidden Markov Model,简称HMM)是一种统计建模方法,常用于处理序列数据,如自然语言处理、语音识别、生物信息学等领域。它的核心思想是,存在一组不可直接观测的“隐藏状态”,这些状态按照...

    隐马尔科夫模型HMM的介绍以及应用

    隐马尔科夫模型(Hidden Markov Model,简称HMM)是概率统计领域中的一个重要模型,尤其在自然语言处理、语音识别和机器视觉等领域有着广泛的应用。它是一种能够描述序列数据生成过程的统计模型,其核心思想是假设...

    隐马尔科夫模型HMM的具体算法代码,包括前向、后向算法、EM参数重估等。

    隐马尔科夫模型(Hidden Markov Model,简称HMM)是概率统计领域中的一个重要模型,广泛应用于自然语言处理、语音识别、生物信息学等多个领域。在这个HMM的MATLAB源代码压缩包中,包含了实现HMM核心算法的代码,如前...

    隐马尔科夫模型(HMM)的MATLAB程序和工具箱

    隐马尔科夫模型(Hidden Markov Model,简称HMM)是一种统计建模方法,尤其在自然语言处理、语音识别、生物信息学等领域有广泛应用。HMM的核心思想是假设观察序列是由不可见的状态序列生成的,而这些状态遵循...

    隐马尔科夫模型HMM简介.rar

    HMM简介 我们通常都习惯寻找一个事物在一段时间里的变化规律。在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等。一个最适用的例子就是天气的预测。 首先,本文会...

    HMM (隐马尔科夫模型)详细资料(含语音识别介绍)

    隐马尔科夫模型(Hidden Markov Model, HMM)是一种统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程。HMM在时间序列数据的分析中非常有用,尤其是当观测数据是由无法直接观测到的隐状态序列决定时。在语音...

    HMM隐马尔科夫模型

    隐马尔科夫模型用Python写的,程序中实现了前向算法、后向算法、维特比算法、前向后向算法,前面的算法比较简单,后面的前向后向算法是用于训练模型的,稍微复杂一点。从测试的结果来看,模型训练有可能收敛于局部...

    第04课 概率图模型,生成式模型与判别式模型,贝叶斯网,马尔科夫链,隐马尔科夫模型HMM

    33.第三十三套:机器读心术之文本挖掘与自然语言处理高级视频教程

Global site tag (gtag.js) - Google Analytics