1.xrange and enumerate
enumerate:enumerate is useful for obtaining an indexed list
xrange: generates the numbers in the range on demand. For looping, this is slightly faster than range() and more memory efficient.
根据性能比较还是xrange 好一点,如果数据量不大,用哪个都可以,哪个更符合要求您就可以使用哪个,而且enumerate和xrange同样使用的是next()方法,只是对返回数据的封装不同。
seq = [i for i in xrange(1000000)]
... n = datetime.datetime.now()
... for i in xrange(len(seq)):
... #print item, i
... pass
... print datetime.datetime.now() - n
0:00:00.066000
>>> seq = [i for i in xrange(1000000)]
... n = datetime.datetime.now()
... for i in xrange(len(seq)):
... #print item, i
... pass
... print datetime.datetime.now() - n
0:00:00.067000
print datetime.datetime.now() - n
0:00:00.142000
>>> seq = [i for i in xrange(1000000)]
... n = datetime.datetime.now()
... for i,item in enumerate(seq):
... #print item, i
... pass
... print datetime.datetime.now() - n
0:00:00.142000
2.xrange and zip
在这里zip和xrange的功能是不一样滴,不能做功能上的比较
劣化代码:
for i in xrange(len(seq1)):
foo(seq1[i], seq2[i])
推荐代码:
for i, j in zip(seq1, seq2)
foo(i, j)
更高效:
for i, j in itertools.izip(seq1, seq2):
foo(i, j)
这里是zip的定义:
zip(...)
zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)]
Return a list of tuples, where each tuple contains the i-th element
from each of the argument sequences. The
returned list is truncated
in length to the length of the shortest argument sequence.
如果用zip做代替结果可能会产生错误!,如下代码没有list中的6
>>> zip([4,5,6],[2,3])
2: [(4, 2), (5, 3)]
而且zip的性能也不是太理想:
import datetime
... seq1 = [i for i in xrange(1000000)]
... seq2 = [j for j in xrange(1000000)]
... n = datetime.datetime.now()
... for i, j in zip(seq1, seq2):
... pass
... print datetime.datetime.now() - n
0:00:01.713000
>>> import itertools
>>> import datetime
... seq1 = [i for i in xrange(1000000)]
... seq2 = [j for j in xrange(1000000)]
... n = datetime.datetime.now()
... for i, j in itertools.izip(seq1, seq2):
... pass
... print datetime.datetime.now() - n
0:00:00.159000
3.filter
不过下面这个写法还是挺好的,可以提高复用性
劣化代码:
for i in seq:
if pred(i):
foo(i)
推荐代码:
for i in itertools.ifilter(pred, seq):
foo(i)
4.imap
map and iterator.imap 也是有很好的复用性,
但是imap和map的定义不同:
itertools.imap(function, *iterables)
Make an iterator that computes the function using arguments from each of the iterables. If function is set to None, then imap() returns the arguments as a tuple. Like map()
but stops when the shortest iterable is exhausted instead of filling in None for shorter iterables. The reason for the difference is that infinite iterator arguments are typically an error for map() (because the output is fully evaluated) but represent a common and useful way of supplying arguments to imap()
两者的区别
for i in map(pow, (2,3,10), (5,2)):
... print i
Traceback (most recent call last):
File "<pyshell#30>", line 1, in <module>
for i in map(pow, (2,3,10), (5,2)):
TypeError: unsupported operand type(s) for ** or pow(): 'int' and 'NoneType'
> for i in itertools.imap(pow, (2,3,10), (5,2)):
... print i
32
9
5.Generators
Since Python 2.2, generators provide an elegant way to write simple and efficient
code for functions that return a list of elements. Based on the yield directive, they
allow you to pause a function and return an intermediate result. The function saves
its execution context and can be resumed later if necessary.
For example (this is the example provided in the PEP about iterators), the Fibonacci
series can be written with an iterator:
>>> def fibonacci():
... a, b = 0, 1
... while True:
... yield b
... a, b = b, a + b
...
>>> fib = fibonacci()
>>> fib.next()
1
>>> fib.next()
1
>>> fib.next()
2
>>> [fib.next() for i in range(10)]
[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]
>>> def my_generator():
... try:
... yield 'something'
... except ValueError:
... yield 'dealing with the exception'
... finally:
... print "ok let's clean"
>>> m = my_generator
>>> m = my_generator()
>>> m.next()
26: 'something'
>>> m.throw(ValueError('haha'))
27: 'dealing with the exception'
>>> m.close()
ok let's clean
>>> m.next
28: <method-wrapper 'next' of generator object at 0x01E20D50>
>>> m.next()
6.groupby
from itertools import groupby
>>> def compress(data):
... return ((len(list(group)), name)
... for name, group in groupby(data))
...
>>> def decompress(data):
... return (car * size for size, car in data)
...
>>> list(compress('get uuuuuuuuuuuuuuuuuup'))
[(1, 'g'), (1, 'e'), (1, 't'), (1, ' '),
(18, 'u'), (1, 'p')]
>>> compressed = compress('get uuuuuuuuuuuuuuuuuup')
>>> ''.join(decompress(compressed))
'get uuuuuuuuuuuuuuuuuup'
分享到:
相关推荐
python代码加密以及python代码的License控制 码农给别人开发项目的时候,防止别人拿到代码后未经授权随意复制代码到未经权授的机器上运行,同时还将代码加密防止别人窃取核心机密。 python代码加密:将python代码...
它旨在帮助开发人员维护一致、可读的Python代码,减少代码风格争议。通过运行black,您可以自动格式化Python代码,使其符合PEP 8代码风格规范。black不仅是一种强大的代码格式化工具,还是一种推动Python代码规范化...
船舶AIS数据轨迹可视化,使用python编写,能够根据船舶AIS数据自动绘制船舶轨迹,并能够对数据进行时间排序和大于一定距离的数据点自动隔断处理。
200行Python代码实现俄罗斯方块所有功能源码200行Python代码实现俄罗斯方块所有功能源码200行Python代码实现俄罗斯方块所有功能源码200行Python代码实现俄罗斯方块所有功能源码200行Python代码实现俄罗斯方块所有...
数学建模常用的30个常用算法(Python代码)数学建模常用的30个常用算法(Python代码)数学建模常用的30个常用算法(Python代码)数学建模常用的30个常用算法(Python代码)数学建模常用的30个常用算法(Python代码)数学建模...
【银行管理系统Python代码】是一个基于Python编程语言实现的简易银行管理软件。这个系统设计得既简单又实用,适合初学者理解和学习,同时也适用于快速搭建基本的银行账户操作模拟环境。在Python编辑器如PyCharm中,...
100行Python代码的贪吃蛇小游戏源码100行Python代码的贪吃蛇小游戏源码100行Python代码的贪吃蛇小游戏源码100行Python代码的贪吃蛇小游戏源码100行Python代码的贪吃蛇小游戏源码100行Python代码的贪吃蛇小游戏源码...
用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python...
本文将深入探讨Python的学习代码及其在不同领域的应用。 Python的基础语法是其核心知识点之一。它采用缩进来表示代码块,使得代码结构清晰易读。变量声明无需指定类型,动态类型特性让编程更为灵活。Python支持多种...
您是否在学习Python的路程中感觉路程漫漫?是否曾经半途而废? 是否感觉该学的内容众多? 因为先前编过《信手拈来按键帮你来》所以这里秉承了它的理念。 以Delphi语言开发的,内置百款实例代码,从速借鉴、高效开发...
python爱心代码高级python爱心代码python爱心代码高级.zippython爱心代码高级python爱心代码python爱心代码高级.zippython爱心代码高级python爱心代码python爱心代码高级.zippython爱心代码高级python爱心代码python...
母亲节祝福python母亲节祝福python代码母亲节祝福python代码母亲节祝福python代码母亲节祝福python代码母亲节祝福python代码母亲节祝福python代码母亲节祝福python代码母亲节祝福python代码母亲节祝福python代码母亲...
【Python可视化应用实战案例】多种台风路径可视化实现方法(附数据+Python代码).zip
PYTHON做贪吃蛇代码 PYTHON做贪PYTHONPYTHON做贪吃蛇代码做贪吃蛇代码 吃蛇代码 PYTHON做贪吃蛇代码PYTHON做贪吃蛇代码PYPYTHON做贪吃蛇代码THON做贪吃蛇代码PYTHON做贪吃蛇代码PYTHON做PYTHON做贪吃蛇代码贪吃蛇...
1、python代码 2、有数据集,直接运行
1. **数据预处理**:在`船舶AIS数据轨迹可视化python代码.py`中,首先会涉及到数据的读取。AIS数据可能存储为CSV或JSON格式,`pandas`库可以帮助我们轻松读取这些数据。数据预处理可能包括清理缺失值、统一数据格式...
python代码实现代码雨的效果
python代码 卡尔曼滤波
快速排序.py python代码实现快速排序.py python代码实现快速排序.py python代码实现快速排序.py python代码实现快速排序.py python代码实现快速排序.py python代码实现快速排序.py python代码实现快速排序.py python...
样本熵python代码实现,使用一个时间序列列表用来test代码,运行流程无BUG,有需要的自取。样本熵python代码实现,使用一个时间序列列表用来test代码,运行流程无BUG,有需要的自取。 样本熵python代码实现,使用一...