`

深入探索 高效的Java异常处理框架

阅读更多

一、 异常的概念和Java异常体系结构

    异常是程序运行过程中出现的错误。本文主要讲授的是Java语言的异常处理。Java语言的异常处理框架,是Java语言健壮性的一个重要体现。

    Java把异常当作对象来处理,并定义一个基类java.lang.Throwable作为所有异常的超类。在Java API中已经定义了许多异常类,这些异常类分为两大类,错误Error和异常Exception。Java异常体系结构呈树状,其层次结构图如图 1所示:

 

图 1  Java异常体系结构

    Thorwable类所有异常和错误的超类,有两个子类Error和Exception,分别表示错误和异常。其中异常类Exception又分为运行时异常(RuntimeException)和非运行时异常,这两种异常有很大的区别,也称之为不检查异常(Unchecked Exception)和检查异常(Checked Exception)。下面将详细讲述这些异常之间的区别与联系:

    1、Error与Exception

    Error是程序无法处理的错误,比如OutOfMemoryError、ThreadDeath等。这些异常发生时,Java虚拟机(JVM)一般会选择线程终止。

    Exception是程序本身可以处理的异常,这种异常分两大类运行时异常和非运行时异常。程序中应当尽可能去处理这些异常。

    2、运行时异常和非运行时异常

    运行时异常都是RuntimeException类及其子类异常,如NullPointerException、IndexOutOfBoundsException等,这些异常是不检查异常,程序中可以选择捕获处理,也可以不处理。这些异常一般是由程序逻辑错误引起的,程序应该从逻辑角度尽可能避免这类异常的发生。

    非运行时异常是RuntimeException以外的异常,类型上都属于Exception类及其子类。从程序语法角度讲是必须进行处理的异常,如果不处理,程序就不能编译通过。如IOException、SQLException等以及用户自定义的Exception异常,一般情况下不自定义检查异常。

二、 异常的捕获和处理

    Java异常的捕获和处理是一个不容易把握的事情,如果处理不当,不但会让程序代码的可读性大大降低,而且导致系统性能低下,甚至引发一些难以发现的错误。

    Java异常处理涉及到五个关键字,分别是:try、catch、finally、throw、throws。下面将骤一介绍,通过认识这五个关键字,掌握基本异常处理知识。

    1、 异常处理的基本语法
    在java中,异常处理的完整语法是:
   

 try{
      //(尝试运行的)程序代码
    }catch(异常类型 异常的变量名){
      //异常处理代码
    }finally{
      //异常发生,方法返回之前,总是要执行的代码
    }


    以上语法有三个代码块:
    try语句块,表示要尝试运行代码,try语句块中代码受异常监控,其中代码发生异常时,会抛出异常对象。

    catch语句块会捕获try代码块中发生的异常并在其代码块中做异常处理,catch语句带一个Throwable类型的参数,表示可捕获异常类型。当try中出现异常时,catch会捕获到发生的异常,并和自己的异常类型匹配,若匹配,则执行catch块中代码,并将catch块参数指向所抛的异常对象。catch语句可以有多个,用来匹配多个中的一个异常,一旦匹配上后,就不再尝试匹配别的catch块了。通过异常对象可以获取异常发生时完整的JVM堆栈信息,以及异常信息和异常发生的原因等。

    finally语句块是紧跟catch语句后的语句块,这个语句块总是会在方法返回前执行,而不管是否try语句块是否发生异常。并且这个语句块总是在方法返回前执行。目的是给程序一个补救的机会。这样做也体现了Java语言的健壮性。

    2、 try、catch、finally三个语句块应注意的问题
    第一、try、catch、finally三个语句块均不能单独使用,三者可以组成 try...catch...finally、try...catch、try...finally三种结构,catch语句可以有一个或多个,finally语句最多一个。
    第二、try、catch、finally三个代码块中变量的作用域为代码块内部,分别独立而不能相互访问。如果要在三个块中都可以访问,则需要将变量定义到这些块的外面。
    第三、多个catch块时候,只会匹配其中一个异常类并执行catch块代码,而不会再执行别的catch块,并且匹配catch语句的顺序是由上到下。

    3、throw、throws关键字
    throw关键字是用于方法体内部,用来抛出一个Throwable类型的异常。如果抛出了检查异常,则还应该在方法头部声明方法可能抛出的异常类型。该方法的调用者也必须检查处理抛出的异常。如果所有方法都层层上抛获取的异常,最终JVM会进行处理,处理也很简单,就是打印异常消息和堆栈信息。如果抛出的是Error或RuntimeException,则该方法的调用者可选择处理该异常。有关异常的转译会在下面说明。

    throws关键字用于方法体外部的方法声明部分,用来声明方法可能会抛出某些异常。仅当抛出了检查异常,该方法的调用者才必须处理或者重新抛出该异常。当方法的调用者无力处理该异常的时候,应该继续抛出,而不是囫囵吞枣一般在catch块中打印一下堆栈信息做个勉强处理。下面给出一个简单例子,看看如何使用这两个关键字:
       

 public static void test3() throws Exception{
      //抛出一个检查异常
            throw new Exception("方法test3中的Exception");
        }
    3、 Throwable类中的常用方法
    getCause():返回抛出异常的原因。如果 cause 不存在或未知,则返回 null。
    getMessage():返回异常的消息信息。
    printStackTrace():对象的堆栈跟踪输出至错误输出流,作为字段 System.err 的值。
 


三、 异常处理的一般原则

    1、 能处理就早处理,抛出不去还不能处理的就想法消化掉或者转换为RuntimeException处理。因为对于一个应用系统来说,抛出大量异常是有问题的,应该从程序开发角度尽可能的控制异常发生的可能。
    2、 对于检查异常,如果不能行之有效的处理,还不如转换为RuntimeException抛出。这样也让上层的代码有选择的余地――可处理也可不处理。
    3、 对于一个应用系统来说,应该有自己的一套异常处理框架,这样当异常发生时,也能得到统一的处理风格,将优雅的异常信息反馈给用户。

    四、 异常的转译与异常链

    1、异常转译的原理

    所谓的异常转译就是将一种异常转换另一种新的异常,也许这种新的异常更能准确表达程序发生异常。

    在Java中有个概念就是异常原因,异常原因导致当前抛出异常的那个异常对象,几乎所有带异常原因的异常构造方法都使用Throwable类型做参数,这也就为异常的转译提供了直接的支持,因为任何形式的异常和错误都是Throwable的子类。比如将SQLException转换为另外一个新的异常DAOException,可以这么写:

    先自定义一个异常DAOException:

    

 public class DAOException extends RuntimeException {
     //(省略了部分代码)
        public DAOException(String message, Throwable cause) {
            super(message, cause);
        }
    }
    比如有一个SQLException类型的异常对象e,要转换为DAOException,可以这么写:

    DAOException daoEx = new DAOException ( "SQL异常", e);

    异常转译是针对所有继承Throwable超类的类而言的,从编程的语法角度讲,其子类之间都可以相互转换。但是,从合理性和系统设计角度考虑,可将异常分为三类:Error、Exception、RuntimeException,笔者认为,合理的转译关系图应该如图 2:

  

 

图 2 异常转译

    为什么要这么做呢?笔者认为,异常的处理存在着一套哲学思想:对于一个应用系统来说,系统所发生的任何异常或者错误对操作用户来说都是系统"运行时"异常,都是这个应用系统内部的异常。这也是异常转译和应用系统异常框架设计的指导原则。在系统中大量处理非检查异常的负面影响很多,最重要的一个方面就是代码可读性降低,程序编写复杂,异常处理的代码也很苍白无力。因此,很有必要将这些检查异常Exception和错误Error转换为RuntimeException异常,让程序员根据情况来决定是否捕获和处理所发生的异常。

    图中的三条线标识转换的方向,分三种情况:

    ①:Error到Exception:将错误转换为异常,并继续抛出。例如Spring WEB框架中,将org.springframework.web.servlet.DispatcherServlet的doDispatch()方法中,将捕获的错误转译为一个NestedServletException异常。这样做的目的是为了最大限度挽回因错误发生带来的负面影响。因为一个Error常常是很严重的错误,可能会引起系统挂起。

    ②:Exception到RuntimeException:将检查异常转换为RuntimeException可以让程序代码变得更优雅,让开发人员集中经理设计更合理的程序代码,反过来也增加了系统发生异常的可能性。

    ③:Error到RuntimeException:目的还是一样的。把所有的异常和错误转译为不检查异常,这样可以让代码更为简洁,还有利于对错误和异常信息的统一处理。

    1、 异常链

    异常链顾名思义就是将异常发生的原因一个传一个串起来,即把底层的异常信息传给上层,这样逐层抛出。Java API文档中给出了一个简单的模型:

   

 try {
     lowLevelOp();
    } catch (LowLevelException le) {
     throw (HighLevelException)
      new HighLevelException().initCause(le);
    }


    当程序捕获到了一个底层异常le,在处理部分选择了继续抛出一个更高级别的新异常给此方法的调用者。这样异常的原因就会逐层传递。这样,位于高层的异常递归调用getCause()方法,就可以遍历各层的异常原因。这就是Java异常链的原理。异常链的实际应用很少,发生异常时候逐层上抛不是个好注意,上层拿到这些异常又能奈之何?而且异常逐层上抛会消耗大量资源,因为要保存一个完整的异常链信息。

  五、 设计一个高效合理的异常处理框架

    对于一个应用系统来说,发生所有异常在用户看来都是应用系统内部的异常。因此应该设计一套应用系统的异常框架,以处理系统运行过程中的所有异常。

    基于这种观点,可以设计一个应用系统的异常比如叫做AppException。并且对用户来说,这些异常都是运行应用系统运行时发生的,因此AppException应该继承RuntimeException,这样系统中所有的其他异常都转译为AppException,当异常发生的时候,前端接收到AppExcetpion并做统一的处理。画出异常处理框架如图 3 :

  

 

图 3 一个应用系统的异常处理框架

    在这个设计图中,AppRuntimeException是系统异常的基类,对外只抛出这个异常,这个异常可以由前端(客户端)接收处理,当异常发生时,客户端的相关组件捕获并处理这些异常,将"友好"的信息展示给客户。

    在AppRuntimeException下层,有各种各样的异常和错误,最终都转译为AppRuntimeException,AppRuntimeException下面还可以设计一些别的子类异常,比如AppDAOException、OtherException等,这些都根据实际需要灵活处理。在往下就是如何将捕获的原始异常比如SQLException、HibernateException转换为更高级一点AppDAOException。

    有关异常框架设计这方面公认比较好的就是Spring,Spring中的所有异常都可以用org.springframework.core.NestedRuntimeException来表示,并且该基类继承的是RuntimeException。Spring框架很庞大,因此设计了很多NestedRuntimeException的子类,还有异常转换的工具,这些都是非常优秀的设计思想。

    六、 Java异常处理总结

    回顾全文,总结一下Java异常处理的要点:

    1、 异常是程序运行过程过程出现的错误,在Java中用类来描述,用对象来表示具体的异常。Java将其区分为Error与Exception,Error是程序无力处理的错误,Exception是程序可以处理的错误。异常处理是为了程序的健壮性。
    2、 Java异常类来自于Java API定义和用户扩展。通过继承Java API异常类可以实现异常的转译。
    3、 异常能处理就处理,不能处理就抛出,最终没有处理的异常JVM会进行处理。
    4、 异常可以传播,也可以相互转译,但应该根据需要选择合理的异常转译的方向。
    5、 对于一个应用系统,设计一套良好的异常处理体系很重要。这一点在系统设计的时候就应该考虑到。


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/huxin1/archive/2009/07/31/4395121.aspx

分享到:
评论

相关推荐

    基于Simulink的风火水储联合调频系统中储能SOC对ACE影响的技术分析

    内容概要:本文详细探讨了在Simulink环境中构建的风火水储联合调频系统中,储能系统的荷电状态(SOC)对区域控制偏差(ACE)的影响。文中通过具体案例和MATLAB代码展示了储能系统在不同SOC水平下的表现及其对系统稳定性的作用。同时,文章比较了储能单独调频与风火水储联合调频的效果,强调了储能系统在应对风电波动性和提高系统响应速度方面的重要作用。此外,作者提出了针对SOC变化率的参数整定方法以及多电源协同工作的优化策略,旨在减少ACE波动并确保系统稳定运行。 适合人群:从事电力系统调频研究的专业人士,尤其是熟悉Simulink仿真工具的研究人员和技术人员。 使用场景及目标:适用于希望深入了解储能系统在电力系统调频中作用的研究者和技术人员,目标是通过合理的SOC管理和多电源协同工作,优化调频效果,提高系统稳定性。 其他说明:文章提供了详细的MATLAB代码片段,帮助读者更好地理解和应用所讨论的概念。同时,文中提到的实际案例和仿真结果为理论分析提供了有力支持。

    欧姆龙PLC NJ中大型程序案例:结构化与面向对象编程的深度融合及应用

    内容概要:本文深入探讨了欧姆龙PLC NJ系列中大型程序中结构化编程与面向对象编程的结合及其应用。首先介绍了结构化编程作为程序框架的基础,通过功能块(FB)实现清晰的程序结构和流程控制。接着阐述了面向对象编程的理念,将现实世界的对象映射到程序中,利用类的概念实现模块化和可扩展性。两者结合提高了程序的容错率,增强了程序的稳定性和可维护性。文中通过多个实际案例展示了如何在工业自动化领域中应用这两种编程方法,如电机控制、设备类的创建、异常处理机制、接口实现多态性、配方管理和报警处理等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些希望提升PLC编程技能的人群。 使用场景及目标:适用于需要优化PLC程序结构、提高程序可靠性和可维护性的场合。目标是帮助工程师掌握结构化编程和面向对象编程的技巧,从而写出更加高效、稳定的PLC程序。 其他说明:文章强调了在实际项目中灵活运用两种编程方法的重要性,并提醒读者注意实时性要求高的动作控制应采用结构化编程,而工艺逻辑和HMI交互则更适合面向对象编程。

    matlab与聚类分析

    matlab与聚类分析。根据我国历年职工人数(单位:万人),使用有序样品的fisher法聚类。

    卡尔曼滤波生成航迹测量程序

    卡尔曼滤波生成航迹测量程序

    基于格子玻尔兹曼方法(LBM)的多孔电极浸润特性研究及其Python实现

    内容概要:本文详细介绍了利用格子玻尔兹曼方法(LBM)对多孔电极浸润特性的模拟研究。首先阐述了LBM的基本原理,包括碰撞和迁移两个关键步骤,并提供了相应的Python伪代码。接着讨论了如何处理多孔介质中的固体边界,特别是通过随机算法生成孔隙结构以及结合CT扫描数据进行三维重构的方法。文中还探讨了表面张力、接触角等因素对浸润过程的影响,并给出了具体的数学表达式。此外,文章提到了并行计算的应用,如使用CUDA加速大规模网格计算,以提高模拟效率。最后,作者分享了一些实用技巧,如通过调整松弛时间和润湿性参数来优化模拟效果,并强调了LBM在处理复杂几何结构方面的优势。 适合人群:从事电池研发、材料科学领域的研究人员和技术人员,尤其是关注多孔电极浸润性和电解液扩散机制的人群。 使用场景及目标:适用于希望深入了解多孔电极内部流体动力学行为的研究者,旨在帮助他们更好地理解和预测电极材料的浸润特性,从而改进电池设计和性能。 其他说明:尽管LBM在处理多孔介质方面表现出色,但在某些极端条件下仍需引入额外的修正项。同时,参数的选择和边界条件的设定对最终结果有着重要影响,因此需要谨慎对待。

    基于FPGA和W5500的TCP网络通信:Zynq扩展口开发测试平台(使用Vivado 2019.2纯Verilog实现)

    内容概要:本文详细介绍了在Zynq扩展口上使用FPGA和W5500实现TCP网络通信的过程。作者通过一系列实验和技术手段,解决了多个实际问题,最终实现了稳定的数据传输。主要内容包括:硬件搭建(SPI接口配置)、数据回环处理、压力测试及优化、多路复用扩展以及上位机测试脚本的编写。文中提供了大量Verilog代码片段,展示了如何通过状态机控制SPI通信、优化数据缓存管理、处理中断等问题。 适合人群:对FPGA开发和网络通信感兴趣的工程师,尤其是有一定Verilog编程基础的研发人员。 使用场景及目标:适用于需要在嵌入式系统中实现高效、稳定的TCP通信的应用场景。目标是帮助读者掌握FPGA与W5500结合进行网络通信的具体实现方法和技术细节。 其他说明:文章不仅提供了详细的代码实现,还分享了许多实践经验,如硬件连接注意事项、信号完整性问题的解决方案等。此外,作者还提到了未来的工作方向,如UDP组播和QoS优先级控制的实现。

    python3.10以上 可安装pyside6(类似pyqt),具体安装操作步骤

    python3.10以上 可安装pyside6(类似pyqt),具体安装操作步骤

    基于FDTD仿真的可调谐石墨烯超材料吸收体设计与实现

    内容概要:本文详细介绍了利用有限差分时域法(FDTD)进行可调谐石墨烯超材料吸收体的设计与仿真。文中解释了石墨烯超材料的基本结构(三层“三明治”结构)、关键参数(如化学势、周期、厚度等)及其对吸收性能的影响。同时展示了如何通过调整石墨烯的化学势来实现吸收峰的位置和强度的变化,以及如何优化结构参数以获得最佳的吸收效果。此外,还提供了具体的代码示例,帮助读者理解和重现相关实验结果。 适合人群:从事纳米光子学、超材料研究的专业人士,尤其是对石墨烯基超材料感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于希望深入了解石墨烯超材料的工作原理及其潜在应用场景的研究人员;旨在探索新型可调谐光学器件的设计思路和发展方向。 其他说明:文中不仅分享了理论知识,还包括了许多实践经验,如避免常见错误、提高仿真相关效率的小技巧等。对于想要将研究成果应用于实际产品的团队来说,这些细节非常有价值。

    随机生成2字到10字的中文词组

    随机生成2字,3字,4字,5字,6字,7字,8字,9字,10字的中文词组20个

    【汽车电子电气架构】智能座舱域控平台设计:基于双片龍鷹一号SoC芯片的高性能硬件架构与多模态交互系统构建

    内容概要:本文详细探讨了智能座舱域控设计的发展历程和技术趋势。首先介绍了智能座舱从被动式交互到主动式交互的技术演变,包括硬件和交互方式的进步。随后,文章重点讨论了智能座舱功能发展趋势,涵盖车载显示技术的多屏化、大屏化和高端化,以及SoC芯片的多核异构架构和算力融合,强调了其在智能座舱中的核心作用。此外,还阐述了电子电气架构从分布式向集成化的转型,分析了其面临的挑战和未来趋势。最后,基于当前智能座舱的发展需求,提出了一种基于双片龍鷹一号芯片的新域控平台设计方案,详细描述了其硬件设计实现方案,旨在提供高性能、高可靠性的智能座舱解决方案。 适合人群:汽车电子工程师、智能座舱研发人员及相关领域的技术人员。 使用场景及目标:①帮助读者理解智能座舱的技术发展历程及其未来发展方向;②为智能座舱域控平台的设计和开发提供参考和技术支持;③探讨电子电气架构的转型对汽车行业的影响及应对策略。 其他说明:文章结合实际案例和技术数据,深入浅出地解释了智能座舱的各项技术细节,不仅提供了理论指导,还具有较强的实践意义。通过对智能座舱域控平台的全面剖析,有助于推动智能座舱技术的创新发展,提升用户体验。

    多智能体协同编队控制:无人机编队背后的Python实现与关键技术解析

    内容概要:本文详细介绍了多智能体协同编队控制的技术原理及其应用实例。首先通过生动形象的例子解释了编队控制的核心概念,如一致性算法、虚拟结构法和Leader-Follower模式。接着深入探讨了如何用Python实现基础的一致性控制,以及如何通过调整参数(如Kp、Ka)来优化编队效果。文中还讨论了实际工程中常见的问题,如通信延迟、避障策略和动态拓扑变化,并给出了相应的解决方案。最后,强调了参数调试的重要性,并分享了一些实用技巧,如预测补偿、力场融合算法和分布式控制策略。 适合人群:对多智能体系统、无人机编队控制感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解多智能体协同编队控制理论并能够将其应用于实际项目的研究人员和开发者。目标是帮助读者掌握编队控制的关键技术和实现方法,提高系统的稳定性和可靠性。 其他说明:文章不仅提供了详细的理论讲解,还附有具体的代码示例,便于读者理解和实践。同时,作者结合自身经验分享了许多宝贵的调试技巧和注意事项,有助于读者在实际应用中少走弯路。

    评估管线钢环焊缝质量及其对氢脆的敏感性.pptx

    评估管线钢环焊缝质量及其对氢脆的敏感性.pptx

    C盘清理bat脚本自动清理C盘垃圾文件

    C盘清理bat脚本自动清理C盘垃圾文件

    GBT21266-2007 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法

    GBT21266-2007 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法

    弹跳球 XNA 游戏项目 演示如何使用 C# 在 Visual Studio XNA 中构建类似 arkanoiddx-ball 的游戏

    弹跳球 XNA 游戏项目。演示如何使用 C# 在 Visual Studio XNA 中构建类似 arkanoiddx-ball 的游戏。

    【人形机器人领域】宇树科技人形机器人:技术实力、市场炒作与应用前景分析

    内容概要:文章全面解析了宇树科技人形机器人的发展现状、技术实力、市场炒作现象及其应用前景和面临的挑战。宇树科技成立于2016年,凭借春晚舞台的惊艳亮相和社交媒体的热议迅速走红,其人形机器人具备先进的运动控制算法、传感器技术和仿生结构设计。然而,市场炒作现象如高价租赁、二手市场炒作和虚假宣传等影响了市场秩序。尽管存在炒作,人形机器人在工业、服务和家庭领域仍具广阔前景,但也面临技术升级、成本控制、安全性和政策监管等挑战。 适合人群:对机器人技术、人工智能以及科技发展趋势感兴趣的读者,包括科技爱好者、投资者和相关行业的从业者。 使用场景及目标:①帮助读者了解宇树科技人形机器人的技术特点和发展历程;②揭示市场炒作现象及其影响;③探讨人形机器人的应用前景和面临的挑战。 其他说明:文章强调了宇树科技人形机器人在技术上的突破和市场上的表现,同时也提醒读者关注市场炒作现象带来的风险,呼吁各方共同努力推动人形机器人产业健康发展。

    msvcp140.dll

    msvcp140.dll丢失怎样修复

    光学技术超透镜解决方案全球市场分析:前5强生产商排名及市场份额预测

    超透镜是一种将具有特殊电磁特性的纳米结构、按照一定方式进行排列的二维平面透镜,可实现对入射光振幅、相位、偏振等参量的灵活调控,在镜头模组、全息光学、AR/VR等方面具有重要应用,具有颠覆传统光学行业的潜力。 目前,超透镜解决方案的市场处于起步阶段,企业根据客户的具体需求和应用场景为其定制专用超透镜或超透镜产品。 根据QYResearch最新调研报告显示,预计2031年全球超透镜解决方案市场规模将达到29.26亿美元,未来几年年复合增长率CAGR为79.55%。 全球范围内,超透镜解决方案主要生产商包括Metalenz, Inc., Radiant Opto-Electronics (NIL Technology),迈塔兰斯、纳境科技、山河元景等,其中前五大厂商占有大约77.84%的市场份额。 目前,全球核心厂商主要分布在欧美和亚太地区。 就产品类型而言,目前红外超透镜解决方案是最主要的细分产品,占据大约96.76%的份额。 就产品类型而言,目前消费电子是最主要的需求来源,占据大约36.27%的份额。 主要驱动因素: 独特性能优势:超透镜解决方案具有更轻薄、成本更低、成像更好、更易集成、更高效及更易自由设计等优势。能以微米级厚度实现传统厘米级透镜功能,还可集多个光学元件功能于一身,大幅减小成像系统体积、重量,简化结构并优化性能。 技术创新推动:超透镜解决方案技术不断取得进步,设计技术和工艺水平持续提升,其性能和稳定性得以不断提高。制造工艺方面,电子束光刻等多种技术应用到超透镜解决方案生产中,推动超透镜解决方案向更高分辨率、更高产量、更大面积、更高性能的方向发展。 市场需求增长:消费电子、汽车电子、医疗、工业等众多领域快速发展,对高精度、高性能光学器件需求不断增加。如在手机摄像头中可缩小模组体积、提升成像分辨率和降低成本;在汽车电子领域能提高车载摄像头、激光雷达等传感器性能。

    MATLAB实现新能源并网的电力市场调度优化模型及其应用

    内容概要:本文详细介绍了基于MATLAB和优化工具Gurobi/Cplex实现的新能源并网电力市场调度模型。该模型通过IEEE30节点系统进行仿真,重点探讨了风电接入对传统火电调度的影响。文中展示了关键决策变量如机组启停状态、实时出力以及风电出力的定义方法,并深入解析了目标函数的设计,特别是总成本函数中燃料成本、启停成本、备用成本和弃风惩罚之间的权衡。此外,文章还讨论了直流潮流约束的作用,以及节点电价计算背后的经济学原理。最后,通过对不同情景的模拟实验,验证了模型的有效性和实用性。 适用人群:适用于从事电力系统研究、电力市场运营管理和新能源并网调度的专业人士和技术人员。 使用场景及目标:①帮助理解和掌握新能源并网对电力市场调度的具体影响;②为制定合理的电力市场规则和政策提供理论依据和技术支持;③指导实际电力系统的调度操作,提高系统运行效率和经济效益。 其他说明:文中提供的代码片段和具体实现细节有助于读者更好地理解模型的构造和求解过程。同时,强调了在实际应用中需要注意的问题,如弃风惩罚系数的选择、备用容量的配置等。

    基于Python的二手车爬虫数据可视化分析设计(毕业设计源码)

    用Python开发的爬取二手车网站数据及其分析的程序,爬取的时候采用selenium驱动google浏览器进行数据的抓取,抓取的网页内容传入lxml模块的etree对象HTML方法通过xpath解析DOM树,不过二手车的关键数据比如二手车价格,汽车表显里程数字采用了字体文件加密。据的展示采用pyecharts,它是一个用于生成 Echarts 图表的类库。爬取的数据插入mysql数据库和分析数据读取mysql数据库表都是通过pymysql模块操作。

Global site tag (gtag.js) - Google Analytics