`
gh_aiyz
  • 浏览: 40315 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

Missian指南六:异步客户端使用指南

阅读更多

重要:Missian刚刚更新到0.31,新增了Future风格的回调方式。

 

Missian没有绑定spring,但是强烈推荐配合spring一起使用。异步客户端由于需要调用BeanLocator去寻找回调的 Bean,如果配合Spring使用,可以直接使用SpringLocator(BeanLocator的唯一实现),否则需要自己实现。

 

使用异步客户端需要注意一点:由于是异步调用,所以一个远程方法的返回值永远是null(如果不是void的话)或者是原生数据类型的默认值。一段时间后(比如100毫秒)后客户端收到这个返回值,会去找到相应的回调对象进行调用。

 

异步的优势是:在调用的期间我们不需要像同步调用一样有一个线程一直在等着它的返回值,而是调用完即可返回释放线程,当客户端接受到返回值后会进行 回调,业务流程可以继续往下执行。不要小看这个等待的时间,假如A服务调用了一个跨机房的服务或者一个重型的服务B,那么B的响应时间可能是100毫秒甚 至更多,那么可以想象在高并发的情况下,可能A服务的全部线程都耗死在无穷的等待上了。

 

我们还是先看看如何配合Spring来使用Missian异步客户端。

 

步骤一:给Hello.hello(String, int)创建一个回调类

注意和0.2x相比,这里有比较大的不同:

public class HelloCallback {
	public void hello(String returnValue) {
		System.out.println(returnValue);
	}
}

这个类的方法要和Hello接口的方法一一对应,Hello中所有方法(除了返回值为void的方法)都应该有一个回调方法,回调方法名和Hello接口中对应的方法名一样,而且只接受一个参数,参数类型和对应方法的返回值一致。

 

例如,Hello有一个hello(String, int)方法的返回值是String类型,那么要求HelloCallback必须有一个hello(String)的方法。

 

 

步骤二:修改Hello接口,用注解的方法声明回调Bean

这里和0.21前的版本也有所不同,以前这个注解是用在方法上的,现在直接用在接口上,所以一个接口只需要注解一次了。

@CallbackTarget("helloCallback")
public interface Hello {
	public String hello(String name, int age);
}

 

步骤三:在Spring配置文件中配置这个回调Bean

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
	<!-- your callback bean, missian client will invoke its execute() method when received the returned object -->
	<bean id="helloCallback" class="com.missian.example.bean.HelloCallback">
	</bean>
</beans>

 

步骤四:在Spring中创建AsyncMissianProxyFactory

	<bean id="asyncMissianProxyFactory" class="com.missian.client.async.AsyncMissianProxyFactory" init-method="init" destroy-method="destroy">
		<constructor-arg >
			<bean class="com.missian.common.beanlocate.SpringLocator"/>
		</constructor-arg>
	</bean>

这里我们使用的是AsyncMissianProxyFactory的最简单的构造函数,只接受一个BeanLocator。这时候默认创建一个4 个线程的线程池用来处理回调逻辑,1个线程用来处理IO,需要指定线程数,或者将一个已经存在的线程池传入,可以参考其它几个构造函数:

public AsyncMissianProxyFactory(BeanLocator callbackLoacator, ExecutorService threadPool,  int callbackIoProcesses, boolean logBeforeCodec, boolean logAfterCodec, NetworkConfig networkConfig) {}
public AsyncMissianProxyFactory(BeanLocator callbackLoacator, ExecutorService threadPool,  int callbackIoProcesses, boolean logBeforeCodec, boolean logAfterCodec){}
public AsyncMissianProxyFactory(BeanLocator callbackLoacator, ExecutorService threadPool) {}
public AsyncMissianProxyFactory(BeanLocator callbackLoacator, int threadPoolSize, int callbackIoProcesses, boolean logBeforeCodec, boolean logAfterCodec) {}
public AsyncMissianProxyFactory(BeanLocator callbackLoacator, ExecutorService threadPool, NetworkConfig networkConfig) {}
public AsyncMissianProxyFactory(BeanLocator callbackLoacator, int threadPoolSize, int callbackIoProcesses, boolean logBeforeCodec, boolean logAfterCodec, NetworkConfig networkConfig) {}
public AsyncMissianProxyFactory(BeanLocator callbackLoacator, int threadPoolSize){}

假如在服务器里使用Missian客户端,可以考虑将服务器主线程池传入给AsyncMissianProxyFactory,共享线程池。 

 

步骤五:实现异步调用

 

	public static void main(String[] args) throws IOException {
		ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext("com/missian/example/client/async/withspring/applicationContext-*.xml");
		//actually you can inject AsyncMissianProxyFactory into any other beans to use it.
		//we just show how AsyncMissianProxyFactory works here.
		AsyncMissianProxyFactory asyncMissianProxyFactory = (AsyncMissianProxyFactory)context.getBean("asyncMissianProxyFactory");
		Hello hello = (Hello)asyncMissianProxyFactory.create(Hello.class, "tcp://localhost:1235/hello");
		long time = System.currentTimeMillis();
		for(int i=0; i<10000; i++) {
			hello.hello("gg", 25);	
		}
		System.out.println(System.currentTimeMillis()-time);
	}

 你可以清楚地看到,所有的请求都发送出去之后,返回值陆续返回并回掉了HelloCallback。

和同步的客户端一样,可以使用http协议发送数据:

Hello hello = (Hello)asyncMissianProxyFactory.create(Hello.class, "http://localhost:1235/hello");

但目前比较遗憾的是,还不能够支持异步调用Hessian服务。  

另外需要说明的是,这个直接从Context里面取出AsyncMissianProxyFactory只是用来演示异步调用的用法;正常的做法应该是将AsyncMissianProxyFactory注入到我们需要使用它的Bean。


===============0.31.新增功能分割线===================

 

如何为重载方法都实现回调?

比如以下两个方法都需要回调:

public interface Hello {
    String hello(String name, int age, String country);
    String hello(String name, int age);
}

 按照上面所说的,他们的回调方法都映射到:

void hello(String);

 这样会造成回调错误,因此需要使用一个注解来说明回调方法名:

@CallbackTarget("helloCallback")
public interface Hello {
	@CallbackTargetMethod("hello0")
	public String hello(String name, int age, String country);

	@CallbackTargetMethod("hello1")
	public String hello(String name, int age);
}

 对应的,回调类的实现:

public class HelloCallback {
	public void hello0(String returnValue) {
		System.out.println(returnValue);
	}
	public void hello1(String returnValue) {
		System.out.println("hello1:"+returnValue);
	}
	
}

 注意如果不使用注解,系统寻找默认的方法。注解同样也可以用于非重载的方法。

 

另外一种回调的实现

如果不希望使用注解,那么还有另外一种方式可供选择:

如果服务器端的方法是:

String hello(String name, int age);

 那么客户端的接口可以写成(注意,Missian不要求服务器端和客户端使用同一个接口类,甚至接口名都可以不同,而只要求方法名及参数必须匹配):

public interface Hello {
	public String hello(String name, int age, Callback cb);
}

 调用时:

Hello hello = (Hello)factory.create(Hello.class, "http://localhost:1235/hello");
Callback cb = ......
hello.hello("name", 80, cb);

 即可以异步调用成功。

 

Future风格的异步实现

我个人非常喜欢Future这种方法,在Mina中就有大量的使用。同样Missian也提供了这样一个能力。提供了一个AysncFuture,即可以通过get()变成同步,也可以通过addListner()来监听,一旦返回值到达,就会出发监听器。

 

如果服务器端的方法是:

String hello(String name, int age);

 那么客户端的接口可以写成(注意,Missian不要求服务器端和客户端使用同一个接口类,甚至接口名都可以不同,而只要求方法名及参数必须匹配):

public interface Hello {
	public AysncFuture<String> hello(String name, int age, Class<String> returnType);
}

 调用时:

Hello hello = (Hello)factory.create(Hello.class, "http://localhost:1235/hello");
Async<String> future = hello.hello("name", 80, String.class);

 如果想阻塞直到数据返回,那么:

String value = future.get();
System.out.println(value);

 如果想通过监听器实现事件驱动:

AsyncListener listener = ....
future.addListener(listener);
 

 

 

 

 

 

 

分享到:
评论
8 楼 sooxin 2012-07-23  
沉年老东西,问题一堆,实在不敢用。
放入tomcat
警告: EXCEPTION :
java.nio.BufferUnderflowException
at java.nio.Buffer.nextGetIndex(Buffer.java:474)
at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:117)
at org.apache.mina.core.buffer.AbstractIoBuffer.get(AbstractIoBuffer.java:492)
at com.missian.common.io.IoBufferInputStream.read(IoBufferInputStream.java:44)
at com.caucho.hessian.io.HessianInputFactory.readHeader(HessianInputFactory.java:74)
at com.missian.server.handler.MissianSkeleton.invoke(MissianSkeleton.java:142)
at com.missian.server.handler.MissianHandler.messageReceived(MissianHandler.java:61)
7 楼 shuibingfy 2011-01-17  
shuibingfy 写道
请教下楼主,如果用Future方式,用get同步调用,如何设置超时时间呢?
如果Future方式,又在哪里设置是否长连接呢?

哦,明白了
用get(long timeout, TimeUnit unit)就行了吧
至于异步的长连接问题,是不是只要不调用AsyncMissianProxyFactory.destroy(),就可以认为是长连接?
6 楼 shuibingfy 2011-01-14  
请教下楼主,如果用Future方式,用get同步调用,如何设置超时时间呢?
如果Future方式,又在哪里设置是否长连接呢?
5 楼 zhangcheng 2011-01-04  
楼主搞的这个东西,我最近也有这个打算。我们的一个项目中使用了hessian,但是同步的http请求,效率实在是不怎么样。所以打算用mina作为服务器端,但是又不想改变客户端的调用方式,用stub的rpc。所以楼主将这两个好项目结合在一起,很不错。决定试用一下。
4 楼 gh_aiyz 2010-12-15  
yanwt 写道
我不是这个意思,我是说我一次发了50个请求,如:
  for (int i = 0; i < 50; i++) {
            AsyncFuture<String> future = async.asyncHello(time + "gg", i, String.class);
            resultList.add(future);
            System.out.println("testasync:"+System.currentTimeMillis());
        }
后台HelloImpl中的
public String asyncHello(String name, int age) {
        try {
            Thread.sleep(5000);
            return "hi, " + name + ", " + age;
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return null;
    }
还是一个一个同步执行的。这样耗时是50*5000,使用异步调用应该是大大减小这个时间才对
如果我使用spring的@Async注解,又不能使用hessian接口,FutureTask不能被序列化,比较郁闷啊。

为什么啊要Sleep5秒钟呢?后台应该是用一个线程池来处理这些请求,对于单个请求是同步的,但是这一批请求应该是并发处理的。后台你用的是Missian的Server吗?有需要可以加我MSN,在线讨论一下,效率高些。gh_aiyz#hotmail.com
3 楼 yanwt 2010-12-15  
我不是这个意思,我是说我一次发了50个请求,如:
  for (int i = 0; i < 50; i++) {
            AsyncFuture<String> future = async.asyncHello(time + "gg", i, String.class);
            resultList.add(future);
            System.out.println("testasync:"+System.currentTimeMillis());
        }
后台HelloImpl中的
public String asyncHello(String name, int age) {
        try {
            Thread.sleep(5000);
            return "hi, " + name + ", " + age;
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return null;
    }
还是一个一个同步执行的。这样耗时是50*5000,使用异步调用应该是大大减小这个时间才对
如果我使用spring的@Async注解,又不能使用hessian接口,FutureTask不能被序列化,比较郁闷啊。
2 楼 gh_aiyz 2010-12-15  
fs.get();这种方式是同步的,文档中已有说明,异步可以用以下方式:
1、用annotation标注回调类及回调方法
2、在客户端方法最后一个参数传入Callback对象
3、使用AsyncFuture.addLisnter();

fs.get()是同步的,这符合所有Future操作的原义。
1 楼 yanwt 2010-12-15  
刚试用了一下,感觉请求是异步发送的,但服务还是同步调用的,一个处理完了才会处理下一个。
测试代码如下:
HelloAsync async = (HelloAsync) asyncMissianProxyFactory.create(HelloAsync.class, "tcp://localhost:1235/hello");
        long time = System.currentTimeMillis();
        List<AsyncFuture<String>> resultList = new ArrayList<AsyncFuture<String>>();

        for (int i = 0; i < 50; i++) {
            AsyncFuture<String> future = async.asyncHello(time + "gg", i, String.class);
            resultList.add(future);
            System.out.println("testasync:"+System.currentTimeMillis());
        }
        for (AsyncFuture<String> fs : resultList) {
                System.out.println(fs.get());     //打印各个线程(任务)执行的结果
        }

相关推荐

    missian:一个java RPC框架,无模式风格

    1. **克隆源码**:使用Git工具克隆"missian-master"仓库到本地。 2. **构建项目**:通过Maven或Gradle等构建工具编译源代码。 3. **阅读文档**:查看项目文档以了解如何配置和服务调用。 4. **编写客户端和服务端**...

    Spring集成ActiveMQ配置

    6. **Missian ActiveMQ-JMS简单实例**:这可能是一个具体的项目实例,它展示了如何在Spring应用中使用ActiveMQ实现异步RPC(远程过程调用)。在这种模式下,一个服务通过消息将请求发送到队列,另一端的服务监听队列...

    LTspice仿真:LDO电源电路学习与实践的利器

    内容概要:本文详细介绍了如何利用LTspice进行LDO(低压差线性稳压器)电源电路的仿真。首先讲解了如何导入LDO模型并配置仿真环境,接着深入探讨了瞬态分析、相位裕度、电源抑制比(PSRR)等关键仿真的具体步骤和注意事项。文中提供了多个实用的操作技巧,如通过调整补偿电容优化相位裕度,以及使用.step param命令批量测试不同参数的影响。此外,还分享了一些常见的仿真误区及其解决方法,帮助读者更好地理解和掌握LDO的设计与调试。 适合人群:电子工程专业学生、电源电路设计初学者、希望深入了解LDO特性的工程师。 使用场景及目标:适用于希望通过仿真工具提高LDO设计技能的人群。主要目标是掌握LDO的基本工作原理,学会使用LTspice进行各种类型的仿真分析,从而优化电路设计,确保系统的稳定性和性能。 其他说明:文章不仅提供详细的仿真步骤和技术细节,还附带了作者的实际经验和常见问题解决方案,使读者能够在实践中不断改进自己的设计思路。

    渝安集团员工职业发展通道设计方案.ppt

    渝安集团员工职业发展通道设计方案.ppt

    新能源电动汽车VCU与BMS的HIL硬件在环仿真技术及其模块化建模

    内容概要:本文详细介绍了新能源电动汽车中VCU(整车控制器)和BMS(电池管理系统)的HIL(硬件在环)仿真技术。首先阐述了整车建模的基础,包括电池、电机等关键部件的建模要点。接着分别解析了驾驶员模块、仪表模块、BCU整车控制器模块、MCU电机模块、TCU变速箱模块、BMS电池管理模块等多个子模块的功能和实现方式。最后强调了HIL仿真在电动汽车控制系统测试和优化中的重要性,特别是在降低成本和风险方面的作用。 适合人群:从事新能源汽车研发的技术人员,尤其是专注于VCU和BMS领域的工程师。 使用场景及目标:适用于需要深入了解电动汽车控制系统仿真技术的研发团队,在产品开发初期进行系统测试和优化,确保各子系统间的协同工作正常。 其他说明:文中提供了大量代码示例,帮助读者更好地理解和实践相关概念和技术细节。此外,还分享了一些实际项目中的经验和教训,如故障注入测试的具体应用场景等。

    如何应对一线人员春节后的离职潮.docx

    如何应对一线人员春节后的离职潮

    线性代数_GitHub_课件作业_教学辅助用途_1742837800.zip

    线性代数

    离职面谈表.xls

    离职面谈表.xls

    聚宽对接qmt大礼包,帮助你配置好交易实盘环境

    聚宽对接qmt大礼包,配备需要的全部软件:python3.9版本,qmt模拟安装包,pycharm安装包,talib包

    试用期转正表.xls

    试用期转正表.xls

    招聘数据分析.xls

    招聘数据分析.xls

    如何让新员工快速融入团队.docx

    如何让新员工快速融入团队

    电力电子仿真中并离网逆变器及无功补偿设备的控制策略与建模

    内容概要:本文详细介绍了并离网逆变器的两种主要控制策略——PQ控制和V/f控制,以及无功能量发生器(SVG)和有源电力滤波器(APF)的仿真模型。对于PQ控制,文章展示了如何将功率指令转化为电流指令,并强调了电网电压定向和限幅处理的重要性。V/f控制则用于离网模式,通过调节电压和频率来维持系统的稳定。SVG主要用于无功补偿,通过实时计算无功需求进行补偿。APF则专注于谐波检测和消除,利用自适应滤波器提高效率。此外,文中还提供了多个实用的小技巧,如仿真步长设置、模式切换时的前馈补偿等。 适合人群:从事电力电子仿真研究的技术人员,尤其是对逆变器控制策略感兴趣的工程师。 使用场景及目标:适用于需要深入理解和实现逆变器控制策略的研究项目,帮助工程师优化仿真模型,提升系统性能,确保仿真结果的准确性。 其他说明:文章不仅提供了详细的代码片段,还分享了许多实践经验,有助于读者避免常见错误,提高仿真成功率。

    Carsim与Simulink联合仿真中基于线性二自由度模型的卡尔曼滤波(KF)实现及优化

    内容概要:本文详细介绍了如何利用Carsim与Simulink进行联合仿真,通过线性二自由度模型和卡尔曼滤波(KF)来估计车辆的质心侧偏角和横摆角速度。首先搭建了联合仿真框架,Carsim提供车辆状态量,Simulink负责算法处理。文中展示了线性二自由度模型的状态方程及其参数设定,并深入探讨了KF的两种实现方式:S函数编程和Simulink内置模块。对于S函数实现,着重讲解了状态转移矩阵的动态更新以及噪声矩阵Q的调整策略,确保模型能够适应车速变化。而对于内置模块,则指出了其在灵活性方面的不足之处。此外,还讨论了联合仿真的配置要点,如数据接口同步、采样时间和信号处理等问题。 适合人群:从事车辆动力学研究、控制理论应用、自动化控制领域的工程师和技术人员。 使用场景及目标:适用于需要精确估计车辆质心侧偏角和横摆角速度的研究和开发项目,特别是在涉及ESP等主动安全系统的开发过程中。目标是提高估计精度,增强系统的鲁棒性和响应速度。 其他说明:文章提供了详细的代码片段和实践经验分享,帮助读者更好地理解和实施相关技术。建议在实际应用中根据具体需求选择合适的KF实现方式,并注意处理各种边界条件和异常情况。

    档案管理[03].pptx

    档案管理[03]

    风电与储能联合调频系统:基于Python的建模与优化

    内容概要:本文详细介绍了风电与储能联合调频系统的原理及其优化方法。首先解释了风电输出功率的波动性和对电网频率的影响,提出储能系统作为解决方案。文中展示了如何用Python生成风速数据并构建调频控制系统,重点讨论了PID控制器的设计以及SOC(荷电状态)管理策略。此外,还探讨了调频控制逻辑、硬件在环测试、风电功率预测模型(如LSTM)、调频效果验证方法及储能系统的物理限制等问题。最后强调了模型验证的重要性,提出了异常数据注入测试的方法。 适合人群:从事电力系统自动化、新能源发电及储能技术研发的专业人士,尤其是有一定编程基础的研究人员和技术工程师。 使用场景及目标:适用于需要理解和实施风电与储能联合调频项目的团队。主要目标是提高电网稳定性,减少风电波动带来的负面影响,同时延长储能系统的使用寿命。 其他说明:文中提供了大量实用的Python代码示例,涵盖了从数据生成到控制逻辑实现再到模型验证的全过程。对于希望深入理解风储调频系统的工作机制和技术挑战的人来说,是一份非常有价值的参考资料。

    HCIA-Storage V4.5 培训教材 合集

    HCIA-Storage V4.5 培训教材 合集

    基于S7-1200与博途V15的PLC小车自动往返控制系统设计与仿真

    内容概要:本文详细介绍了利用西门子S7-1200系列PLC和博途V15软件平台构建的小车自动往返控制系统。首先进行硬件组态,选择合适的CPU并配置输入输出点位,确保限位开关和急停按钮的有效接入。接着编写梯形图逻辑,实现小车在AB两点间的精确控制,采用定时器互锁机制避免电机损坏。然后设计触摸屏界面,通过WinCC创建动画效果展示小车运动状态,并设置按钮操作实现手动与自动模式切换。最后进行联合仿真实验,解决常见错误如变量地址配置不当等问题,确保系统稳定运行。 适合人群:工业自动化领域的工程师和技术人员,尤其是对PLC编程和HMI设计有一定基础的学习者。 使用场景及目标:适用于需要掌握PLC控制系统设计全流程的专业人士,帮助他们理解如何整合硬件组态、梯形图编程以及HMI开发,最终完成一个完整的自动化工程项目。 其他说明:文中提供了详细的调试经验和技巧,附带74分钟的操作录像资料,有助于读者更好地理解和实践相关知识点。

    公司员工关怀工作清单.xls

    公司员工关怀工作清单

    基于ANSYS/LS-DYNA的多孔延时起爆与重复起爆仿真技术详解

    内容概要:本文详细介绍了如何利用ANSYS/LS-DYNA进行多孔延时起爆和重复起爆的仿真。首先强调了起爆点的时间线控制和材料参数设置的重要性,如使用*INITIAL_DETONATION关键字设定起爆时间和坐标,以及配置JWL方程等材料属性。接着讨论了重复起爆的具体实现方式,包括使用*CONTROL_TERMINATION配合重启动功能,确保起爆点的正确复用。此外,文章还提供了调试技巧,如检查起爆同步性和优化时间步控制,以确保仿真的准确性。最后,分享了一些实际应用中的经验和常见错误,帮助用户更好地理解和掌握这一复杂的技术。 适合人群:从事爆炸力学研究和爆破工程设计的专业人士,尤其是有一定ANSYS/LS-DYNA使用经验的工程师。 使用场景及目标:适用于需要精确控制多个起爆点时间延迟和多次起爆的应用场合,如矿山开采、隧道挖掘等领域的爆破作业仿真。目标是提高爆破效率,减少对周围环境的影响。 其他说明:文中提到的许多技术细节对于初学者来说可能会有一定的难度,因此建议从简单的单孔起爆开始练习,逐步掌握复杂的多孔延时和重复起爆技术。同时,保持良好的注释习惯有助于追踪参数修改历史,便于后续调试和维护。

Global site tag (gtag.js) - Google Analytics