`
samuschen
  • 浏览: 405610 次
  • 性别: Icon_minigender_2
  • 来自: 北京
社区版块
存档分类
最新评论

Hadoop的运行痕迹

阅读更多

在使用hadoop的时候,可能遇到各种各样的问题,然而由于hadoop的运行机制比较复杂,因而出现了问题的时候比较难于发现问题。

本文欲通过某种方式跟踪Hadoop的运行痕迹,方便出现问题的时候可以通过这些痕迹来解决问题。

一、环境的搭建

为了能够跟踪这些运行的痕迹,我们需要搭建一个特殊的环境,从而可以一步步的查看上一节提到的一些关键步骤所引起的变化。

我 们首先搭建一个拥有一个NameNode(namenode:192.168.1.104),三个 DataNode(datanode01:192.168.1.105, datanode02:192.168.1.106, datanode03:192.168.1.107)的Hadoop环境,其中SecondaryNameNode和NameNode运行在同一台机器 上。

对于这四台机器上的Hadoop,我们需要进行如下相同的配置:

  • NameNode,SeondaryNameNode,JobTracker都应该运行在namenode:192.168.1.104机器上
  • DataNode,TaskTracker,以及生成的Map和Reduce的Task JVM应该运行在datanode01, datanode02, datanode03上
  • 数据共有三份备份
  • HDFS以及Map-Reduce运行的数据放在/data/hadoop/dir/tmp文件夹下

<property>

  <name>fs.default.name</name>

  <value>hdfs://192.168.1.104:9000</value>

</property>

<property>

  <name>mapred.job.tracker</name>

  <value>192.168.1.104:9001</value>

</property>

<property>

  <name>dfs.replication</name>

  <value>3</value>

</property>

<property>

  <name>hadoop.tmp.dir</name>

  <value>/data/hadoopdir/tmp </value>

  <description>A base for other temporary directories.</description>

</property>

然而由于Map-Reduce过程相对复杂,为了能够对Map和Reduce的Task JVM进行远程的调试,从而能一步一步观察,因而对NameNode和三个DataNode有一些不同的配置:

对于NameNode:

  • 设 置mapred.job.reuse.jvm.num.tasks为-1,使得多个运行于同一个DataNode上的Map和Reduce的Task共用 同一个JVM,从而方便对此JVM进行远程调试,并且不会因为多个Task JVM监听同一个远程调试端口而发生冲突
  • 对于mapred.tasktracker.map.tasks.maximum和mapred.tasktracker.reduce.tasks.maximum的配置以DataNode上的为准
  • 设置io.sort.mb为1M(原来为100M),是为了在Map阶段让内存中的map output尽快的spill到文件中来,从而我们可以观察map的输出
  • 设置mapred.child.java.opts的时候,即设置Task JVM的运行参数,添加远程调试监听端口8333

  <property>
    <name>mapred.job.reuse.jvm.num.tasks</name>
    <value>-1</value>
    <description></description>
  </property>
  <property>
    <name>mapred.tasktracker.map.tasks.maximum</name>
    <value>1</value>
    <description></description>
  </property>
  <property>
    <name>mapred.tasktracker.reduce.tasks.maximum</name>
    <value>1</value>
    <description></description>
  </property>
  <property>
    <name>io.sort.mb</name>
    <value>1</value>
    <description></description>
  </property>
  <property>
    <name>mapred.child.java.opts</name>
    <value>-Xmx200m -agentlib:jdwp=transport=dt_socket,address=8883,server=y,suspend=y</value>
    <description></description>
  </property>

  <property>
    <name>mapred.job.shuffle.input.buffer.percent</name>
    <value>0.001</value>
    <description></description>
  </property>

<property>
    <name>mapred.job.shuffle.merge.percent</name>
    <value>0.001</value>
    <description></description>
    </property>

  <property>
    <name>io.sort.factor</name>
    <value>2</value>
    <description></description>
  </property>

对于DataNode:

  • 对 于datanode01:192.168.1.105,设置同时运行的map task的个数(mapred.tasktracker.map.tasks.maximum)为1,同时运行的reduce task的个数(mapred.tasktracker.reduce.tasks.maximum)为0
  • 对于 datanode02:192.168.1.106,设置同时运行的map task的个数(mapred.tasktracker.map.tasks.maximum)为0,同时运行的reduce task的个数(mapred.tasktracker.reduce.tasks.maximum)为0
  • 对于 datanode02:192.168.1.107,设置同时运行的map task的个数(mapred.tasktracker.map.tasks.maximum)为0,同时运行的reduce task的个数(mapred.tasktracker.reduce.tasks.maximum)为1
  • 之所以这样设置,是因为 我们虽然可以控制多个Map task共用同一个JVM,然而我们不能控制Map task和Reduce Task也共用一个JVM。从而当Map task的JVM和Reduce Task的JVM同时在同一台机器上启动的时候,仍然会出现监听远程调用端口冲突的问题。
  • 经过上面的设置,从而datanode01专门负责运行Map Task,datanode03专门负责运行Reduce Task,而datanode02不运行任何的Task,甚至连TaskTracker也不用启动了
  • 对 于Reduce Task设置mapred.job.shuffle.input.buffer.percent和 mapred.job.shuffle.merge.percent为0.001,从而使得拷贝,合并阶段的中间结果都因为内存设置过小而写入硬盘,我们 能够看到痕迹
  • 设置io.sort.factor为2,使得在map task输出不多的情况下,也能触发合并。

除了对Map task和Reduce Task进行远程调试之外,我们还想对NameNode,SecondaryName,DataNode,JobTracker,TaskTracker进行远程调试,则需要修改一下bin/hadoop文件:

if [ "$COMMAND" = "namenode " ] ; then

  CLASS='org.apache.hadoop.hdfs.server.namenode.NameNode'

  HADOOP_OPTS="$HADOOP_OPTS $HADOOP_NAMENODE_OPTS -agentlib:jdwp=transport=dt_socket,address=8888 ,server=y,suspend=n"

elif [ "$COMMAND" = "secondarynamenode " ] ; then

  CLASS='org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode'

  HADOOP_OPTS="$HADOOP_OPTS $HADOOP_SECONDARYNAMENODE_OPTS -agentlib:jdwp=transport=dt_socket,address=8887 ,server=y,suspend=n"

elif [ "$COMMAND" = "datanode " ] ; then

  CLASS='org.apache.hadoop.hdfs.server.datanode.DataNode'

  HADOOP_OPTS="$HADOOP_OPTS $HADOOP_DATANODE_OPTS -agentlib:jdwp=transport=dt_socket,address=8886 ,server=y,suspend=n"

……

elif [ "$COMMAND" = "jobtracker " ] ; then

  CLASS=org.apache.hadoop.mapred.JobTracker

  HADOOP_OPTS="$HADOOP_OPTS $HADOOP_JOBTRACKER_OPTS -agentlib:jdwp=transport=dt_socket,address=8885 ,server=y,suspend=n"

elif [ "$COMMAND" = "tasktracker " ] ; then

  CLASS=org.apache.hadoop.mapred.TaskTracker

  HADOOP_OPTS="$HADOOP_OPTS $HADOOP_TASKTRACKER_OPTS -agentlib:jdwp=transport=dt_socket,address=8884 ,server=y,suspend=n"

在进行一切实验之前,我们首先清空/data/hadoopdir/tmp以及logs文件夹。

 

二、格式化HDFS

格式化HDFS需要运行命令:bin/hadoop namenode –format

于是打印出如下的日志:

10/11/20 19:52:21 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = namenode/192.168.1.104
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 0.19.2
STARTUP_MSG:   build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.19 -r 789657; compiled by 'root' on Tue Jun 30 12:40:50 EDT 2009
************************************************************/
10/11/20 19:52:21 INFO namenode.FSNamesystem: fsOwner=admin,sambashare
10/11/20 19:52:21 INFO namenode.FSNamesystem: supergroup=supergroup
10/11/20 19:52:21 INFO namenode.FSNamesystem: isPermissionEnabled=true
10/11/20 19:52:21 INFO common.Storage: Image file of size 97 saved in 0 seconds.
10/11/20 19:52:21 INFO common.Storage: Storage directory /data/hadoopdir/tmp/dfs/name has been successfully formatted.
10/11/20 19:52:21 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at namenode/192.168.1.104
************************************************************/

这个时候在NameNode的/data/hadoopdir/tmp下面出现如下的文件树形结构:

+- dfs
       +- name
              +--- current
                         +---- edits
                         +---- fsimage
                         +---- fstime
                         +---- VERSION
              +---image
                         +---- fsimage

这个时候,DataNode的/data/hadoopdir/tmp中还是空的。

 

二、启动Hadoop

启动Hadoop需要调用命令bin/start-all.sh,输出的日志如下:

starting namenode, logging to logs/hadoop-namenode-namenode.out

192.168.1.106: starting datanode, logging to logs/hadoop-datanode-datanode02.out

192.168.1.105: starting datanode, logging to logs/hadoop-datanode-datanode01.out

192.168.1.107: starting datanode, logging to logs/hadoop-datanode-datanode03.out

192.168.1.104: starting secondarynamenode, logging to logs/hadoop-secondarynamenode-namenode.out

starting jobtracker, logging to logs/hadoop-jobtracker-namenode.out

192.168.1.106: starting tasktracker, logging to logs/hadoop-tasktracker-datanode02.out

192.168.1.105: starting tasktracker, logging to logs/hadoop-tasktracker-datanode01.out

192.168.1.107: starting tasktracker, logging to logs/hadoop-tasktracker-datanode03.out

从日志中我们可以看出,此脚本启动了NameNode, 三个DataNode,SecondaryName,JobTracker以及三个TaskTracker.

下面我们分别从NameNode和三个DataNode中运行jps -l,看看到底运行了那些java程序:

在NameNode中:

 

22214 org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode

22107 org.apache.hadoop.hdfs.server.namenode.NameNode

22271 org.apache.hadoop.mapred.JobTracker

在datanode01中:

12580 org.apache.hadoop.mapred.TaskTracker

12531 org.apache.hadoop.hdfs.server.datanode.DataNode

在datanode02中:

10548 org.apache.hadoop.hdfs.server.datanode.DataNode

在datanode03中:

12593 org.apache.hadoop.hdfs.server.datanode.DataNode

12644 org.apache.hadoop.mapred.TaskTracker

同我们上面的配置完全符合。

当启动了Hadoop以后,/data/hadoopdir/tmp目录也发生了改变,通过ls -R我们可以看到。

对于NameNode:

  • 在name文件夹中,多了in_use.lock文件,说明NameNode已经启动了
  • 多了nameseondary文件夹,用于存放SecondaryNameNode的数据

 

.:

dfs

./dfs:

name  namesecondary

./dfs/name:

current  image  in_use.lock

./dfs/name/current:

edits  fsimage  fstime  VERSION

./dfs/name/image:

fsimage

./dfs/namesecondary:

current  image  in_use.lock

./dfs/namesecondary/current:

edits  fsimage  fstime  VERSION

./dfs/namesecondary/image:

fsimage

对于DataNode:

  • 多了dfs和mapred两个文件夹
  • dfs文件夹用于存放HDFS的block数据的
  • mapred用于存放Map-Reduce Task任务执行所需要的数据的。

 

.:

dfs   mapred

./dfs:

data

./dfs/data:

current  detach  in_use.lock  storage  tmp

./dfs/data/current:

dncp_block_verification.log.curr  VERSION

./dfs/data/detach:

./dfs/data/tmp:

./mapred:

local

./mapred/local:

 

当然随着Hadoop的启动,logs文件夹下也多个很多的日志:

在NameNode上,日志有:

  • NameNode的日志:
    • hadoop-namenode-namenode.log此为log4j的输出日志
    • hadoop-namenode-namenode.out此为stdout和stderr的输出日志
  • SecondaryNameNode的日志:
    • hadoop-secondarynamenode-namenode.log此为log4j的输出日志
    • hadoop-secondarynamenode-namenode.out此为stdout和stderr的输出日志
  • JobTracker的日志:
    • hadoop-jobtracker-namenode.log此为log4j的输出日志
    • hadoop-jobtracker-namenode.out此为stdout和stderr的输出日志

在DataNode上的日志有(以datanode01为例子):

  • DataNode的日志
    • hadoop-datanode-datanode01.log此为log4j的输出日志
    • hadoop-datanode-datanode01.out此为stdout和stderr的输出日志
  • TaskTracker的日志
    • hadoop-tasktracker-datanode01.log此为log4j的输出日志
    • hadoop-tasktracker-datanode01.out此为stdout和stderr的输出日志

下面我们详细查看这些日志中的有重要意义的信息:

在hadoop-namenode-namenode.log文件中,我们可以看到NameNode启动的过程:

Namenode up at: namenode/192.168.1.104:9000

//文件的数量

Number of files = 0

Number of files under construction = 0

//加载fsimage和edits文件形成FSNamesystem

Image file of size 97 loaded in 0 seconds.

Edits file /data/hadoopdir/tmp/dfs/name/current/edits of size 4 edits # 0 loaded in 0 seconds.

Image file of size 97 saved in 0 seconds.

Finished loading FSImage in 12812 msecs

//统计block的数量和状态

Total number of blocks = 0

Number of invalid blocks = 0

Number of under-replicated blocks = 0

Number of  over-replicated blocks = 0

//离开safe mode

Leaving safe mode after 12 secs.

//注册DataNode

Adding a new node: /default-rack/192.168.1.106:50010

Adding a new node: /default-rack/192.168.1.105:50010

Adding a new node: /default-rack/192.168.1.107:50010

在hadoop-secondarynamenode-namenode.log文件中,我们可以看到SecondaryNameNode的启动过程:

Secondary Web-server up at: 0.0.0.0:50090

//进行Checkpoint的周期

Checkpoint Period   :3600 secs (60 min)

Log Size Trigger    :67108864 bytes (65536 KB)

//进行一次checkpoint,从NameNode下载fsimage和edits

Downloaded file fsimage size 97 bytes.

Downloaded file edits size 370 bytes.

//加载edit文件,进行合并,将合并后的fsimage保存,我们可以看到fsimage变大了

Edits file /data/hadoopdir/tmp/dfs/namesecondary/current/edits of size 370 edits # 6 loaded in 0 seconds.

Image file of size 540 saved in 0 seconds.

//此次checkpoint结束

Checkpoint done. New Image Size: 540

在hadoop-jobtracker-namenode.log文件中,我们可以看到JobTracker的启动过程:

JobTracker up at: 9001

JobTracker webserver: 50030

//清除HDFS中的/data/hadoopdir/tmp/mapred/system文件夹,是用于Map-Reduce运行过程中保存数据的

Cleaning up the system directory

//不断的从TaskTracker收到heartbeat,第一次是注册TaskTracker

Got heartbeat from: tracker_datanode01:localhost/127.0.0.1:58297

Adding a new node: /default-rack/datanode01

Got heartbeat from: tracker_datanode03:localhost/127.0.0.1:37546

Adding a new node: /default-rack/datanode03

在hadoop-datanode-datanode01.log中,可以看到DataNode的启动过程:

//格式化DataNode存放block的文件夹

Storage directory /data/hadoopdir/tmp/dfs/data is not formatted.

Formatting ...

//启动DataNode

Opened info server at 50010

Balancing bandwith is 1048576 bytes/s

Initializing JVM Metrics with processName=DataNode, sessionId=null

//向NameNode注册此DataNode

dnRegistration = DatanodeRegistration(datanode01:50010, storageID=, infoPort=50075, ipcPort=50020)

New storage id DS-1042573498-192.168.1.105-50010-1290313555129 is assigned to data-node 192.168.1.105:5001

DatanodeRegistration(192.168.1.105:50010, storageID=DS-1042573498-192.168.1.105-50010-1290313555129, infoPort=50075, ipcPort=50020)In DataNode.run, data = FSDataset{dirpath='/data/hadoopdir/tmp/dfs/data/current'}

//启动block scanner

Starting Periodic block scanner.

在hadoop-tasktracker-datanode01.log中,可以看到TaskTracker的启动过程:

//启动TaskTracker

Initializing JVM Metrics with processName=TaskTracker, sessionId=

TaskTracker up at: localhost/127.0.0.1:58297

Starting tracker tracker_datanode01:localhost/127.0.0.1:58297

//向JobTracker发送heartbeat

Got heartbeatResponse from JobTracker with responseId: 0 and 0 actions

一 个特殊的log文件是hadoop-tasktracker-datanode02.log中,因为我们设置的最大Map Task数目和最大Reduce Task数据为0,而报了一个Exception,Can not start task tracker because java.lang.IllegalArgumentException,从而使得datanode02上的TaskTracker没有启动起来。

 

当Hadoop启动起来以后,在HDFS中也创建了一些文件夹/data/hadoopdir/tmp/mapred/system,用来保存Map-Reduce运行时候的共享资源。

三、向HDFS中放入文件

向HDFS中放入文件,需要使用命令:bin/hadoop fs -put inputdata /data/input

放入文件完毕后,我们查看HDFS:bin/hadoop fs -ls /data/input,结果为:

-rw-r--r--   3 hadoop supergroup    6119928 2010-11-21 00:47 /data/input/inputdata

这个时候,我们查看DataNode下的/data/hadoopdir/tmp文件夹发生了变化:

  • 在datanode01, datanode02, datanode03上的/data/hadoopdir/tmp/dfs/data/current下面都多了如下的block文件
  • 可见block文件被复制了三份

 

.:

dfs  mapred

./dfs:

data

./dfs/data:

current  detach  in_use.lock  storage  tmp

./dfs/data/current:

blk_2672607439166801630   blk_2672607439166801630_1002.meta   dncp_block_verification.log.curr  VERSION

./dfs/data/detach:

./dfs/data/tmp:

./mapred:

local

./mapred/local:

在放入文件的过程中,我们可以看log如下:

namenode的hadoop-namenode-namenode.log如下:

//创建/data/input/inputdata      

ugi=admin,sambashareip=/192.168.1.104       cmd=create      src=/data/input/inputdata        dst=null        perm=hadoop:supergroup:rw-r--r--

//分配block

NameSystem.allocateBlock: /data/input/inputdata. blk_2672607439166801630_1002

NameSystem.addStoredBlock: blockMap updated: 192.168.1.107:50010 is added to blk_2672607439166801630_1002 size 6119928

NameSystem.addStoredBlock: blockMap updated: 192.168.1.105:50010 is added to blk_2672607439166801630_1002 size 6119928

NameSystem.addStoredBlock: blockMap updated: 192.168.1.106:50010 is added to blk_2672607439166801630_1002 size 6119928

datanode01的hadoop-datanode-datanode01.log如下:

//datanode01从客户端接收一个block

Receiving block blk_2672607439166801630_1002 src: /192.168.1.104:41748 dest: /192.168.1.105:50010

src: /192.168.1.104:41748, dest: /192.168.1.105:50010, bytes: 6119928, op: HDFS_WRITE, cliID: DFSClient_-1541812792, srvID: DS-1042573498-192.168.1.105-50010-1290313555129, blockid: blk_2672607439166801630_1002

PacketResponder 2 for block blk_2672607439166801630_1002 terminating

datanode02的hadoop-datanode-datanode02.log如下:

//datanode02从datanode01接收一个block

Receiving block blk_2672607439166801630_1002 src: /192.168.1.105:60266 dest: /192.168.1.106:50010

src: /192.168.1.105:60266, dest: /192.168.1.106:50010, bytes: 6119928, op: HDFS_WRITE, cliID: DFSClient_-1541812792, srvID: DS-1366730865-192.168.1.106-50010-1290313543717, blockid: blk_2672607439166801630_1002

PacketResponder 1 for block blk_2672607439166801630_1002 terminating

datanode03的hadoop-datanode-datanode03.log如下:

//datanode03从datanode02接收一个block

Receiving block blk_2672607439166801630_1002 src: /192.168.1.106:58899 dest: /192.168.1.107:50010

src: /192.168.1.106:58899, dest: /192.168.1.107:50010, bytes: 6119928, op: HDFS_WRITE, cliID: DFSClient_-1541812792, srvID: DS-765014609-192.168.1.107-50010-1290313555841, blockid: blk_2672607439166801630_1002

PacketResponder 0 for block blk_2672607439166801630_1002 terminating

Verification succeeded for blk_2672607439166801630_1002

 

四、运行一个Map-Reduce程序

运行Map-Reduce函数,需要运行命令:bin/hadoop jar hadoop-0.19.2-examples.jar wordcount /data/input /data/output

为了能够观察Map-Reduce一步步运行的情况,我们首先远程调试JobTracker,将断点设置在JobTracker.submitJob函数中。

按照我们上一篇文章讨论的那样,DFSClient向JobTracker提交任务之前,会将任务运行所需要的三类文件放入HDFS,从而可被JobTracker和TaskTracker得到:

  • 运行的jar文件:job.jar
  • 运行所需要的input split的信息:job.split
  • 运行所需的配置:job.xml

当Map-Reduce程序停在JobTracker.submitJob函数中的时候,让我们查看HDFS中有如下的变化:

bin/hadoop fs -ls /data/hadoopdir/tmp/mapred/system

其中多了一个文件夹job_201011202025_0001,这是当前运行的Job的ID,在这个文件夹中有三个文件:

bin/hadoop fs -ls /data/hadoopdir/tmp/mapred/system/job_201011202025_0001

Found 3 items

-rw-r--r--  /data/hadoopdir/tmp/mapred/system/job_201011202025_0001/job.jar

-rw-r--r--  /data/hadoopdir/tmp/mapred/system/job_201011202025_0001/job.split

-rw-r--r--  /data/hadoopdir/tmp/mapred/system/job_201011202025_0001/job.xml

现在我们可以断开对JobTracker的远程调试。

在JobTracker.submitJob的函数中,会读取这些上传到HDFS的文件,从而将Job拆分成Map Task和Reduce Task。

当 TaskTracker通过heartbeat向JobTracker请求一个Map Task或者Reduce Task来运行,按照我们上面的配置,显然datanode01会请求Map Task来执行,而datanode03会申请Reduce Task来执行。

 

下面我们首先来看datanode01上Map Task的执行过程:

当TaskTracker得到一个Task的时候,它会调用TaskTracker.localizeJob将job运行的三个文件从HDFS中拷贝到本地文件夹,然后调用TaskInProgress.localizeTask创建Task运行的本地工作目录。

我 们来远程调试datanode01上的TaskTracker,分别将断点设在localizeJob和localizeTask函数中,当程序停在做完 localizeTask后,我们来看datanode01上的/data/hadoopdir/tmp/mapred/local /taskTracker/jobcache下多了一个文件夹

job_201011202025_0001,在此文件夹下面有如下的结构:

datanode01:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001$ ls -R

.:

attempt_201011202025_0001_m_000000_0  attempt_201011202025_0001_m_000003_0  jars  job.xml  work

./attempt_201011202025_0001_m_000000_0:

job.xml  split.dta  work

./attempt_201011202025_0001_m_000000_0/work:

./attempt_201011202025_0001_m_000003_0:

pid  work

./attempt_201011202025_0001_m_000003_0/work:

tmp

./attempt_201011202025_0001_m_000003_0/work/tmp:

./jars:

job.jar  META-INF  org

./work:

其中,job.xml, job.jar,split.dta为配置文件和运行jar以及input split,jars文件夹下面为job.jar的解压缩。

接下来datanode01要创建Child JVM来执行Task,这时我们在datanode01上运行ps aux | grep java,可以发现各有一个新的JVM被创建:

/bin/java

……

-Xmx200m -agentlib:jdwp=transport=dt_socket,address=8883,server=y,suspend=y

……

org.apache.hadoop.mapred.Child

127.0.0.1 58297

attempt_201011202025_0001_m_000003_0 2093922206

从 JVM的参数我们可以看出,这是一个map任务。从上面的文件我们可以看出,其实此TaskTracker已经在同一个Child JVM里面运行了两个map task,其中一个是attempt_201011202025_0001_m_000003_0,这个没有input split,后来发现他是一个job setup task,而另一个是attempt_201011202025_0001_m_000000_0,是一个真正处理数据的map task,当然如果需要处理的数据量足够大,会有多个处理数据的map task被运行。

我们可以对Child JVM进行远程调试,把断点设在MapTask.run函数中,从上一篇文章中我们知道,map的结果一开始都是保存在buffer中的,当数据量足够 大,则spill到硬盘中,形成spill文件,在map task结束之前,我们查看attempt_201011202025_0001_m_000000_0文件夹,我们可以看到,大量的spill文件已经 生成:

datanode01:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001/attempt_201011202025_0001_m_000000_0$ ls -R

.:

job.xml  output  split.dta  work

./output:

spill0.out   spill16.out  spill22.out  spill29.out  spill35.out  spill41.out  spill48.out  spill54.out  spill60.out  spill67.out  spill73.out  spill7.out

spill10.out  spill17.out  spill23.out  spill2.out   spill36.out  spill42.out  spill49.out  spill55.out  spill61.out  spill68.out  spill74.out  spill80.out

spill11.out  spill18.out  spill24.out  spill30.out  spill37.out  spill43.out  spill4.out   spill56.out  spill62.out  spill69.out  spill75.out  spill81.out

spill12.out  spill19.out  spill25.out  spill31.out  spill38.out  spill44.out  spill50.out  spill57.out  spill63.out  spill6.out   spill76.out  spill82.out

spill13.out  spill1.out   spill26.out  spill32.out  spill39.out  spill45.out  spill51.out  spill58.out  spill64.out  spill70.out  spill77.out  spill83.out

spill14.out  spill20.out  spill27.out  spill33.out  spill3.out   spill46.out  spill52.out  spill59.out  spill65.out  spill71.out  spill78.out  spill8.out

spill15.out  spill21.out  spill28.out  spill34.out  spill40.out  spill47.out  spill53.out  spill5.out   spill66.out  spill72.out  spill79.out  spill9.out

./work:

tmp

./work/tmp:

当整个map task结束后,所有的spill文件会合并成一个文件,这时候我们再查看attempt_201011202025_0001_m_000000_0文件夹:

datanode01:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001/attempt_201011202025_0001_m_000000_0$ ls -R
.:
job.xml  output  split.dta  work

./output:
file.out  file.out.index

./work:
tmp

./work/tmp:

当然如果有多个map task处理数据,就会生成多个file.out,在本例子中,一共只有两个map task处理数据,所以最后的结果为:

datanode01:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001$ ls -R attempt_201011202025_0001_m_00000*

attempt_201011202025_0001_m_000000_0:

job.xml  output  split.dta  work

attempt_201011202025_0001_m_000000_0/output:

file.out  file.out.index

attempt_201011202025_0001_m_000000_0/work:

tmp

attempt_201011202025_0001_m_000000_0/work/tmp:

attempt_201011202025_0001_m_000001_0:

job.xml  output  split.dta  work

attempt_201011202025_0001_m_000001_0/output:

file.out  file.out.index

attempt_201011202025_0001_m_000001_0/work:

tmp

attempt_201011202025_0001_m_000001_0/work/tmp:

attempt_201011202025_0001_m_000003_0:

pid  work

attempt_201011202025_0001_m_000003_0/work:

tmp

attempt_201011202025_0001_m_000003_0/work/tmp:

 

然后我们再来看datanode03上reduce task的运行情况:

我 们同样远程调试datanode03上的TaskTracker,将断点设在localizeJob和localizeTask函数中,当程序停在做完 localizeTask后,我们来看datanode03上的/data/hadoopdir/tmp/mapred/local /taskTracker/jobcache下也多了一个文件夹job_201011202025_0001,在此文件夹下面有如下的结构:

datanode03:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001$ ls -R attempt_201011202025_0001_r_00000*
attempt_201011202025_0001_r_000000_0:
job.xml  work

attempt_201011202025_0001_r_000000_0/work:
tmp

attempt_201011202025_0001_r_000000_0/work/tmp:

attempt_201011202025_0001_r_000002_0:
pid  work

attempt_201011202025_0001_r_000002_0/work:
tmp

attempt_201011202025_0001_r_000002_0/work/tmp:

上面的两个Reduce Task中,attempt_201011202025_0001_r_000002_0是一个job setup task,真正处理数据的是attempt_201011202025_0001_r_000000_0。

接下来datanode03要创建Child JVM来执行Task,这时我们在datanode03上运行ps aux | grep java,可以发现各有一个新的JVM被创建:

/bin/java

……

-Xmx200m -agentlib:jdwp=transport=dt_socket,address=8883,server=y,suspend=y -

……

org.apache.hadoop.mapred.Child

127.0.0.1 37546

attempt_201011202025_0001_r_000002_0 516504201

从JVM的参数我们可以看出,这是一个map任务。

从上一篇文章中我们知道,Reduce Task包括三个过程:copy,sort,reduce

拷贝过程即将所有的map结果复制到reduce task的本地

datanode03:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001/attempt_201011202025_0001_r_000000_0$ ls -R

.:

job.xml  output  pid  work

./output:

map_0.out  map_1.out  map_2.out  map_3.out

./work:

tmp

./work/tmp:

如图所示,如果共有4个map task,则共拷贝到本地4个map.out。

在 拷贝的过程中,有一个背后的线程会对已经拷贝到本地的map.out进行预先的合并,形成map.merged文件,合并的规则是按照 io.sort.factor来进行合并,对于我们的配置就是两两合并,下面我们看到的就是map_2.out和map_3.out合并成 map_3.out.merged,在另外两个还没有合并的时候,拷贝过程结束了,则背后的合并进程也就结束了。

datanode03:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001/attempt_201011202025_0001_r_000000_0$ ls -R
.:
job.xml  output  pid  work

./output:
map_0.out  map_1.out  map_3.out.merged

./work:
tmp

./work/tmp:

sort 过程就是将拷贝过来的map输出合并并排序,也是按照io.sort.factor来进行合并,也即两两合并。下面我们看到的就是map_0.out和 map_1.out合并为一个intermediate.1,加上另外的map_3.out.merged,数目已经小于io.sort.factor 了,于是不再合并。

datanode03:/data/hadoopdir/tmp/mapred/local/attempt_201011202025_0001_r_000000_0$ ls -r

intermediate.1

datanode03:/data/hadoopdir/tmp/mapred/local/taskTracker/jobcache/job_201011202025_0001/attempt_201011202025_0001_r_000000_0$ ls -R
.:
job.xml  output  pid  work

./output:
map_3.out.merged

./work:
tmp

./work/tmp:

reduce的过程就是循环调用reducer的reduce函数,将结果输出到HDFS中。

namenode:/data/hadoop-0.19.2$ bin/hadoop fs -ls /data/output

Found 2 items

/data/output/_logs

/data/output/part-00000

 

当然我们通过log,也可以看到Map-Reduce的运行过程:

命令行输出的日志如下:

namenode:/data/hadoop-0.19.2$ bin/hadoop jar hadoop-0.19.2-examples.jar wordcount /data/input /data/output

10/11/22 07:38:44 INFO mapred.FileInputFormat: Total input paths to process : 4

10/11/22 07:38:45 INFO mapred.JobClient: Running job: job_201011202025_0001

10/11/22 07:38:46 INFO mapred.JobClient:  map 0% reduce 0%

10/11/22 07:39:14 INFO mapred.JobClient:  map 25% reduce 0%

10/11/22 07:39:23 INFO mapred.JobClient:  map 50% reduce 0%

10/11/22 07:39:27 INFO mapred.JobClient:  map 75% reduce 0%

10/11/22 07:39:30 INFO mapred.JobClient:  map 100% reduce 0%

10/11/22 07:39:31 INFO mapred.JobClient:  map 100% reduce 8%

10/11/22 07:39:36 INFO mapred.JobClient:  map 100% reduce 25%

10/11/22 07:39:40 INFO mapred.JobClient:  map 100% reduce 100%

10/11/22 07:39:41 INFO mapred.JobClient: Job complete: job_201011202025_0001

10/11/22 07:39:41 INFO mapred.JobClient: Counters: 16

10/11/22 07:39:41 INFO mapred.JobClient:   File Systems

10/11/22 07:39:41 INFO mapred.JobClient:     HDFS bytes read=61199280

10/11/22 07:39:41 INFO mapred.JobClient:     HDFS bytes written=534335

10/11/22 07:39:41 INFO mapred.JobClient:     Local bytes read=74505214

10/11/22 07:39:41 INFO mapred.JobClient:     Local bytes written=81308914

10/11/22 07:39:41 INFO mapred.JobClient:   Job Counters

//四个map,一个reduce

10/11/22 07:39:41 INFO mapred.JobClient:     Launched reduce tasks=1

10/11/22 07:39:41 INFO mapred.JobClient:     Launched map tasks=4

10/11/22 07:39:41 INFO mapred.JobClient:     Data-local map tasks=4

10/11/22 07:39:41 INFO mapred.JobClient:   Map-Reduce Framework

10/11/22 07:39:41 INFO mapred.JobClient:     Reduce input groups=37475

10/11/22 07:39:41 INFO mapred.JobClient:     Combine output records=351108

10/11/22 07:39:41 INFO mapred.JobClient:     Map input records=133440

10/11/22 07:39:41 INFO mapred.JobClient:     Reduce output records=37475

10/11/22 07:39:41 INFO mapred.JobClient:     Map output bytes=31671148

10/11/22 07:39:41 INFO mapred.JobClient:     Map input bytes=24479712

10/11/22 07:39:41 INFO mapred.JobClient:     Combine input records=2001312

10/11/22 07:39:41 INFO mapred.JobClient:     Map output records=1800104

10/11/22 07:39:41 INFO mapred.JobClient:     Reduce input records=149900

在namenode的hadoop-jobtracker-namenode.log中,我们可以看到JobTracker的运行情况:

//创建一个Job,分成四个map task

JobInProgress: Input size for job job_201011220735_0001 = 24479712

JobInProgress: Split info for job:job_201011220735_0001

JobInProgress: tip:task_201011220735_0001_m_000000 has split on node:/default-rack/datanode02

JobInProgress: tip:task_201011220735_0001_m_000000 has split on node:/default-rack/datanode01

JobInProgress: tip:task_201011220735_0001_m_000000 has split on node:/default-rack/datanode03

JobInProgress: tip:task_201011220735_0001_m_000001 has split on node:/default-rack/datanode03

JobInProgress: tip:task_201011220735_0001_m_000001 has split on node:/default-rack/datanode01

JobInProgress: tip:task_201011220735_0001_m_000001 has split on node:/default-rack/datanode02

JobInProgress: tip:task_201011220735_0001_m_000002 has split on node:/default-rack/datanode02

JobInProgress: tip:task_201011220735_0001_m_000002 has split on node:/default-rack/datanode01

JobInProgress: tip:task_201011220735_0001_m_000002 has split on node:/default-rack/datanode03

JobInProgress: tip:task_201011220735_0001_m_000003 has split on node:/default-rack/datanode01

JobInProgress: tip:task_201011220735_0001_m_000003 has split on node:/default-rack/datanode02

JobInProgress: tip:task_201011220735_0001_m_000003 has split on node:/default-rack/datanode03

 

//datanode01通过heartbeat向JobTracker申请运行一个job setup task

JobTracker: Adding task 'attempt_201011220735_0001_m_000005_0' to tip task_201011220735_0001_m_000005, for tracker 'tracker_datanode01:localhost/127.0.0.1:48339'

JobTracker: tracker_datanode01:localhost/127.0.0.1:48339 -> LaunchTask: attempt_201011220735_0001_m_000005_0

JobInProgress: Task 'attempt_201011220735_0001_m_000005_0' has completed task_201011220735_0001_m_000005 successfully.

 

//datanode01向JobTracker请求运行第一个map task

JobTracker: Adding task 'attempt_201011220735_0001_m_000000_0' to tip task_201011220735_0001_m_000000, for tracker 'tracker_datanode01:localhost/127.0.0.1:48339'

JobInProgress: Choosing data-local task task_201011220735_0001_m_000000

JobTracker: tracker_datanode01:localhost/127.0.0.1:48339 -> LaunchTask: attempt_201011220735_0001_m_000000_0

JobInProgress: Task 'attempt_201011220735_0001_m_000000_0' has completed task_201011220735_0001_m_000000 successfully.

 

//datanode01向JobTracker请求运行第二个map task

JobTracker: Adding task 'attempt_201011220735_0001_m_000001_0' to tip task_201011220735_0001_m_000001, for tracker 'tracker_datanode01:localhost/127.0.0.1:48339'

JobInProgress: Choosing data-local task task_201011220735_0001_m_000001

JobTracker: tracker_datanode01:localhost/127.0.0.1:48339 -> LaunchTask: attempt_201011220735_0001_m_000001_0

JobInProgress: Task 'attempt_201011220735_0001_m_000001_0' has completed task_201011220735_0001_m_000001 successfully.

 

//datanode01向JobTracker请求运行第三个map task

JobTracker: Adding task 'attempt_201011220735_0001_m_000002_0' to tip task_201011220735_0001_m_000002, for tracker 'tracker_datanode01:localhost/127.0.0.1:48339'

JobInProgress: Choosing data-local task task_201011220735_0001_m_000002

JobTracker: tracker_datanode01:localhost/127.0.0.1:48339 -> LaunchTask: attempt_201011220735_0001_m_000002_0

JobInProgress: Task 'attempt_201011220735_0001_m_000002_0' has completed task_201011220735_0001_m_000002 successfully.

 

//datanode01向JobTracker请求运行第四个map task

JobTracker: Adding task 'attempt_201011220735_0001_m_000003_0' to tip task_201011220735_0001_m_000003, for tracker 'tracker_datanode01:localhost/127.0.0.1:48339'

JobInProgress: Choosing data-local task task_201011220735_0001_m_000003

JobTracker: tracker_datanode01:localhost/127.0.0.1:48339 -> LaunchTask: attempt_201011220735_0001_m_000003_0

JobTracker: Got heartbeat from: tracker_datanode01:localhost/127.0.0.1:48339 (initialContact: false acceptNewTasks: true) with responseId: 39

JobInProgress: Task 'attempt_201011220735_0001_m_000003_0' has completed task_201011220735_0001_m_000003 successfully.



//datanode03向JobTracker申请运行一个commit task

JobTracker: Adding task 'attempt_201011220735_0001_r_000000_0' to tip task_201011220735_0001_r_000000, for tracker 'tracker_datanode03:localhost/127.0.0.1:44118'

JobTracker: tracker_datanode03:localhost/127.0.0.1:44118 -> LaunchTask: attempt_201011220735_0001_r_000000_0

JobTracker: tracker_datanode03:localhost/127.0.0.1:44118 -> CommitTaskAction: attempt_201011220735_0001_r_000000_0

JobInProgress: Task 'attempt_201011220735_0001_r_000000_0' has completed task_201011220735_0001_r_000000 successfully.

 

//datanode03向JobTracker申请运行一个reduce task

JobTracker: Adding task 'attempt_201011220735_0001_r_000001_0' to tip task_201011220735_0001_r_000001, for tracker 'tracker_datanode03:localhost/127.0.0.1:44118'

JobTracker: tracker_datanode03:localhost/127.0.0.1:44118 -> LaunchTask: attempt_201011220735_0001_r_000001_0

JobInProgress: Task 'attempt_201011220735_0001_r_000001_0' has completed task_201011220735_0001_r_000001 successfully.

 

JobInProgress: Job job_201011220735_0001 has completed successfully.

同样,在datanode01的hadoop-tasktracker-datanode01.log可以看到TaskTracker的运行过程。

在datanode01的logs/userlogs下面,我们可以看到为了运行map task所生成的Child JVM打印出的log,每个map task一个文件夹,在本例中,由于多个map task共用一个JVM,所以只输出了一组log文件

datanode01:/data/hadoop-0.19.2/logs/userlogs$ ls -R

.:

attempt_201011220735_0001_m_000000_0  attempt_201011220735_0001_m_000002_0  attempt_201011220735_0001_m_000005_0

attempt_201011220735_0001_m_000001_0  attempt_201011220735_0001_m_000003_0

./attempt_201011220735_0001_m_000000_0:

log.index

./attempt_201011220735_0001_m_000001_0:

log.index

./attempt_201011220735_0001_m_000002_0:

log.index

./attempt_201011220735_0001_m_000003_0:

log.index

./attempt_201011220735_0001_m_000005_0:

log.index  stderr  stdout  syslog

同样,在datanode03的hadoop-tasktracker-datanode03.log可以看到TaskTracker运行的过程。

在datanode03的logs/users下面,也有一组文件夹,每个reduce task一个文件夹,也是多个reduce task共用一个JVM:

datanode03:/data/hadoop-0.19.2/logs/userlogs$ ls -R

.:

attempt_201011220735_0001_r_000000_0  attempt_201011220735_0001_r_000001_0

./attempt_201011220735_0001_r_000000_0:

log.index  stderr  stdout  syslog

./attempt_201011220735_0001_r_000001_0:

log.index

分享到:
评论

相关推荐

    Hadoop学习总结之五:Hadoop的运行痕迹

    ### Hadoop运行痕迹追踪详解 #### 一、引言 Hadoop作为一种强大的分布式计算框架,在大数据处理领域扮演着举足轻重的角色。然而,随着其功能的不断扩展和复杂性的增加,用户在使用过程中难免会遇到各种各样的问题...

    hadoop 运行原理分析

    Hadoop的运行原理分析深入揭示了其作为分布式处理方案的核心优势,即能够通过简单的编程模型,将复杂的数据处理任务分布到大规模的机器集群上,大幅度提升数据处理和分析的效率。对于刚刚入门的IT人员来说,掌握...

    hadoop运行wordcount实例

    ### Hadoop运行WordCount实例详解 #### 一、Hadoop简介与WordCount程序的重要性 Hadoop 是一个由Apache基金会所开发的分布式系统基础架构。它能够处理非常庞大的数据集,并且能够在集群上运行,通过将大数据分割...

    Hadoop运行原理分析pdf

    《Hadoop运行原理分析》是深入理解大数据处理框架Hadoop的核心读物,它详细解析了Hadoop如何在大规模数据集上高效运行。本文件主要涵盖了以下几个关键知识点: 1. **Hadoop概述**:Hadoop是Apache软件基金会开发的...

    hadoop 运行成功代码(wordcount)

    为了运行Hadoop项目,你需要一个配置完善的Hadoop环境,包括安装Hadoop和配置Hadoop的环境变量。同时,为了方便管理和构建项目,通常会使用Maven作为构建工具。Maven是一个项目管理和依赖管理工具,可以帮助我们管理...

    hadoop Windows 运行环境

    它最初设计时主要考虑的是在Linux集群上运行,但随着技术的发展,Hadoop也开始支持在Windows平台上运行,尽管这并不像在Linux上那样常见。这个"hadopp Windows 运行环境"就是为在Windows操作系统上搭建和运行Hadoop...

    eclipse连接hadoop所需要的hadoop.ddl和eclipse插件和hadoop运行案例

    以下是对"eclipse连接hadoop所需要的hadoop.ddl和eclipse插件和hadoop运行案例"这一主题的详细解释: 首先,让我们了解`hadoop.ddl`。DDL(Data Definition Language)通常指的是数据库中用于定义数据结构的语句,...

    hadoop运行winutils.exe

    在Windows环境下搭建和运行Hadoop、HBase以及Spark等大数据处理框架时,由于这些项目原本是为Linux系统设计的,因此需要一些特定的工具来适应Windows。其中,`winutils.exe`和`hadoop.dll`是两个关键组件,它们允许...

    hadoop的运行案例

    我的博客 Linux环境下,Eclipse运行hadoop的本地模式 :https://blog.csdn.net/Henry_Lin_Wind/article/details/88812421 的运行案例

    Hadoop用微软运行库

    然而,当Hadoop在Windows环境下运行时,可能会遇到一些兼容性问题,特别是与系统库相关的错误。标题提到的“Hadoop用微软运行库”就是为了解决这类问题而提供的解决方案。 描述中指出,这个微软运行库主要是为了...

    winutils-master.zip hadoop windows运行插件

    【标题】"winutils-master.zip" 是一个针对Hadoop在Windows环境下的运行插件,它包含了一个名为 "winutils.exe" 的关键组件。这个插件主要用于解决Hadoop在非Linux系统上的兼容性问题,使得Windows用户也能顺利进行...

    Hadoop运行原理分析

    Hadoop运行原理分析主要涉及MapReduce编程模式、HDFS的架构以及Hadoop分布式计算的基本流程。以下是对该文件内容的详细解析。 1. Hadoop概述 Hadoop是一个能够处理海量数据的分布式计算框架,它基于Google开发的...

    hadoop组件程序包.zip

    7. 测试运行:使用hadoop fs -ls命令检查HDFS是否正常工作,通过运行MapReduce示例验证安装是否成功。 三、Hadoop组件程序包内容 压缩包“soft”通常包含了Hadoop安装所需的全部组件和工具,包括Hadoop源码、编译...

    hadoop运行环境搭建

    一.hadoop运行环境搭建(集群)

    【IT十八掌徐培成】Hadoop第04天-05.win7下hadoop运行需要dll和exe文件的支持.zip

    在Windows 7环境下搭建和运行Hadoop分布式文件系统(HDFS)时,确实需要依赖一些特定的DLL和EXE文件来确保系统能够正确地执行Hadoop的组件和服务。Hadoop原本是为Linux环境设计的,但在Windows上运行时,由于操作...

    cs245-as1-master_Hadoop运行demo_Hadoop学习demo_DEMO_

    【Hadoop运行DEMO详解】 Hadoop是一款开源的分布式计算框架,由Apache基金会开发,它设计用于处理和存储海量数据。在"cs245-as1-master_Hadoop运行demo_Hadoop学习demo_DEMO_"这个项目中,我们主要关注的是如何在...

    hadoop运行脚本run.sh

    hadoop运行脚本run.sh

    大数据技术之-03-Hadoop学习-Hadoop运行模式及常见错误及解决方案.docx

    大数据技术之 Hadoop 运行模式及常见错误及解决方案 Hadoop 运行模式是大数据技术中的一个重要概念,它决定了 Hadoop 集群的运行方式和性能。在本文中,我们将详细介绍 Hadoop 的三种运行模式:本地运行模式、伪...

Global site tag (gtag.js) - Google Analytics