1、 StopAnalyzer
StopAnalyzer能过滤词汇中的特定字符串和词汇,并且完成大写转小写的功能。
2、 StandardAnalyzer
StandardAnalyzer根据空格和符号来完成分词,还可以完成数字、字母、E-mail地址、IP地址以及中文字符的分析处理,还可以支持过滤词表,用来代替StopAnalyzer能够实现的过滤功能。
3、 SimpleAnalyzer
SimpleAnalyzer具备基本西文字符词汇分析的分词器,处理词汇单元时,以非字母字符作为分割符号。分词器不能做词汇的过滤,之进行词汇的分析和分割。输出地词汇单元完成小写字符转换,去掉标点符号等分割符。
在全文检索系统开发中,通常用来支持西文符号的处理,不支持中文。由于不完成单词过滤功能,所以不需要过滤词库支持。词汇分割策略上简单,使用非英文字符作为分割符,不需要分词词库的支持。
4、 WhitespaceAnalyzer
WhitespaceAnalyzer使用空格作为间隔符的词汇分割分词器。处理词汇单元的时候,以空格字符作为分割符号。分词器不做词汇过滤,也不进行小写字符转换。
实际中可以用来支持特定环境下的西文符号的处理。由于不完成单词过滤和小写字符转换功能,也不需要过滤词库支持。词汇分割策略上简单使用非英文字符作为分割符,不需要分词词库支持。
5、 KeywordAnalyzer
KeywordAnalyzer把整个输入作为一个单独词汇单元,方便特殊类型的文本进行索引和检索。针对邮政编码,地址等文本信息使用关键词分词器进行索引项建立非常方便。
6、 CJKAnalyzer
CJKAnalyzer内部调用CJKTokenizer分词器,对中文进行分词,同时使用StopFilter过滤器完成过滤功能,可以实现中文的多元切分和停用词过滤。在Lucene3.0版本中已经弃用。
7、 ChineseAnalyzer
ChineseAnalyzer功能与StandardAnalyzer分析器在处理中文是基本一致,都是切分成单个的双字节中文字符。在Lucene3.0版本中已经弃用。
8、 PerFieldAnalyzerWrapper
PerFieldAnalyzerWrapper功能主要用在针对不同的Field采用不同的Analyzer的场合。比如对于文件名,需要使用KeywordAnalyzer,而对于文件内容只使用StandardAnalyzer就可以了。通过addAnalyzer()可以添加分类器。
9、 IKAnalyzer
实现了以词典为基础的正反向全切分,以及正反向最大匹配切分两种方法。IKAnalyzer是第三方实现的分词器,继承自Lucene的Analyzer类,针对中文文本进行处理。
10、JE-Analysis
JE-Analysis是Lucene的中文分词组件,需要下载。
11、 ICTCLAS4J
ictclas4j中文分词系统是sinboy在中科院张华平和刘群老师的研制的FreeICTCLAS的基础上完成的一个java开源分词项目,简化了原分词程序的复杂度,旨在为广大的中文分词爱好者一个更好的学习机会。
12、 Imdict-Chinese-Analyzer
imdict-chinese-analyzer 是 imdict智能词典 的智能中文分词模块,算法基于隐马尔科夫模型(Hidden Markov Model, HMM),是中国科学院计算技术研究所的ictclas中文分词程序的重新实现(基于Java),可以直接为lucene搜索引擎提供简体中文分词支持。
13、 Paoding Analysis
Paoding Analysis中文分词具有极 高效率 和 高扩展性。引入隐喻,采用完全的面向对象设计,构思先进。其效率比较高,在PIII 1G内存个人机器上,1秒可准确分词100万汉字。采用基于不限制个数的词典文件对文章进行有效切分,使能够将对词汇分类定义。能够对未知的词汇进行合理解析。
paoding讨论区:http://www.iteye.com/topic/110148
14、 MMSeg4J
mmseg4j 用 Chih-Hao Tsai 的 MMSeg 算法(http://technology.chtsai.org/mmseg/ )实现的中文分词器,并实现 lucene 的 analyzer 和 solr 的TokenizerFactory 以方便在Lucene和Solr中使用。 MMSeg 算法有两种分词方法:Simple和Complex,都是基于正向最大匹配。Complex 加了四个规则过虑。官方说:词语的正确识别率达到了 98.41%。mmseg4j 已经实现了这两种分词算法
转载:http://hi.baidu.com/wk19/blog/item/e77ffc43dc18121c9213c624.html
分享到:
相关推荐
lucene3.0 lucene3.0 lucene3.0 lucene3.0 lucene3.0
lucene3.0 中文分词器, 庖丁解牛
Lucene3.0分词系统的核心在于理解和应用其分词原理,无论是对于英文还是中文文本,这一过程都是构建高效搜索引擎的基础。以下是对Lucene3.0分词系统中涉及的关键知识点的深入解析。 ### 英文分词原理 英文分词相较...
lucene 3.0 API中文帮助,学习的人懂得的
【Lucene3.0查询类型详解】 在Lucene3.0中,查询处理是一个关键环节,涉及多种查询方式和理论模型。以下是对这些概念的详细解释: 1. **查询方式**: - **顺序查询**:是最简单的查询方式,直接遍历索引,效率较...
这里的"lucene3.0核心jar包"是 Lucene 的一个重要版本,发布于2009年,为当时的开发人员提供了构建全文搜索引擎的基础框架。 在 Lucene 3.0 中,以下几个关键知识点值得关注: 1. **索引结构**:Lucene 使用倒排...
《Lucene 3.0 原理与代码分析完整版》是一本深入解析Lucene 3.0搜索引擎库的专业书籍。Lucene是Apache软件基金会的开源项目,它为Java开发者提供了一个高性能、全文检索的工具包,广泛应用于各种信息检索系统。这...
Lucene3.0包含了标准的分词器(StandardAnalyzer),它对英文文本进行了高效的处理,如去除停用词、词干提取等。此外,Lucene还支持自定义分词器,允许开发者针对特定语言或业务需求进行定制。 3. **查询解析**: ...
lucene升级了,分词也得升级哦! 在使用lucene3与paoding集成的时候可能会出现以下错误: Exception in thread "main" java.lang.AbstractMethodError: org.apache.lucene.analysis.TokenStream.incrementToken()Z ...
通过上述步骤,开发者可以利用Lucene 3.0构建出功能强大的全文信息检索系统,满足不同场景下的搜索需求。随着技术的不断进步,Lucene后续版本继续优化性能和扩展功能,但3.0版本仍然是许多项目的基础,其设计理念和...
**基于Lucene 3.0的书籍查询系统详解** Lucene是一个开源的全文搜索引擎库,由Apache软件基金会开发。在3.0版本中,Lucene提供了强大的文本分析、索引和搜索功能,使得开发者能够快速地构建自己的全文检索应用。本...
Lucene 3.0提供多种预定义的分词器,如StandardAnalyzer,针对英文文本进行标准化处理。 #### 1.3 索引(Index) 索引是Lucene的核心,它允许快速地查找和排序文档。创建索引的过程包括分析文本、建立倒排索引等...
《深入剖析Lucene3.0:庖丁解牛与索引搜索实践》 在IT行业中,搜索引擎技术扮演着至关重要的角色,而Lucene作为一个开源全文检索库,为开发者提供了强大的文本搜索功能。本文将深入探讨Lucene3.0版本,结合“庖丁解...
在 Lucene 3.0 版本中,虽然已经相对较旧,但仍然包含了基本的搜索引擎功能,适用于简单或特定场景的搜索需求。在这个实例中,我们将探讨如何在 JDK 1.5 和 Lucene 3.0 的环境下构建和运行一个简单的搜索引擎。 ...
lucene3.0-highlighter.jar lucene3.0的高亮jar包,从lucene3.0源码中导出来的
**Lucene 3.0 全文检索入门实例** Lucene 是一个开源的全文检索库,由 Apache 软件基金会开发。它提供了一个高级、灵活的搜索功能框架,允许开发者在自己的应用中轻松地集成全文检索功能。本文将重点介绍如何使用 ...
在本压缩包中,你将找到针对Lucene 3.0版本优化的庖丁分词源代码。 1. **庖丁分词简介**: 庖丁分词是Java实现的高性能中文分词库,其名称来源于《庄子·养生主》中的“庖丁解牛”故事,寓意在处理复杂问题时,如...