Thread类是实现了Runnable接口的一个实例,它代表一个线程的实例,并且,启动线程的唯一方法就是通过Thread类的start()实例方法:
Thread t = new Thread();
t.start();
start()方法是一个native方法,它将启动一个新线程,并执行run()方法。Thread类默认的run()方法什么也不做就退出了。注意:直接调用run()方法并不会启动一个新线程,它和调用一个普通的java方法没有什么区别。
因此,有两个方法可以实现自己的线程:
方法1:自己的类extend Thread,并复写run()方法,就可以启动新线程并执行自己定义的run()方法。例如:
public class MyThread extends Thread {
public run() {
System.out.println("MyThread.run()");
}
}
在合适的地方启动线程:new MyThread().start();
方法2:如果自己的类已经extends另一个类,就无法直接extends Thread,此时,必须实现一个Runnable接口:
public class MyThread extends OtherClass implements Runnable {
public run() {
System.out.println("MyThread.run()");
}
}
为了启动MyThread,需要首先实例化一个Thread,并传入自己的MyThread实例:
MyThread myt = new MyThread();
Thread t = new Thread(myt);
t.start();
由于同一进程内的多个线程共享内存空间,在Java中,就是共享实例,当多个线程试图同时修改某个实例的内容时,就会造成冲突,因此,线程必须实现共享互斥,使多线程同步。
最简单的同步是将一个方法标记为synchronized,对同一个实例来说,任一时刻只能有一个synchronized方法在执行。当一个方法正在执行某个synchronized方法时,其他线程如果想要执行这个实例的任意一个synchronized方法,都必须等待当前执行 synchronized方法的线程退出此方法后,才能依次执行。
但是,非synchronized方法不受影响,不管当前有没有执行synchronized方法,非synchronized方法都可以被多个线程同时执行。
此外,必须注意,只有同一实例的synchronized方法同一时间只能被一个线程执行,不同实例的synchronized方法是可以并发的。例如,class A定义了synchronized方法sync(),则不同实例a1.sync()和a2.sync()可以同时由两个线程来执行。
多线程同步的实现最终依赖锁机制。我们可以想象某一共享资源是一间屋子,每个人都是一个线程。当A希望进入房间时,他必须获得门锁,一旦A获得门锁,他进去后就立刻将门锁上,于是B,C,D...就不得不在门外等待,直到A释放锁出来后,B,C,D...中的某一人抢到了该锁(具体抢法依赖于 JVM的实现,可以先到先得,也可以随机挑选),然后进屋又将门锁上。这样,任一时刻最多有一人在屋内(使用共享资源)。
Java语言规范内置了对多线程的支持。对于Java程序来说,每一个对象实例都有一把“锁”,一旦某个线程获得了该锁,别的线程如果希望获得该锁,只能等待这个线程释放锁之后。获得锁的方法只有一个,就是synchronized关键字。例如:
public class SharedResource {
private int count = 0;
public int getCount() { return count; }
public synchronized void setCount(int count) { this.count = count; }
}
同步方法public synchronized void setCount(int count) { this.count = count; } 事实上相当于:
public void setCount(int count) {
synchronized(this) { // 在此获得this锁
this.count = count;
} // 在此释放this锁
}
如果两个以上的线程同时执行,会引发冲突,因此,要更改SharedResource的内部状态,必须先获得SharedResource实例的锁。
退出synchronized块时,线程拥有的锁自动释放,于是,别的线程又可以获取该锁了。
为了提高性能,不一定要锁定this,例如,SharedResource有两个独立变化的变量:
public class SharedResouce {
private int a = 0;
private int b = 0;
public synchronized void setA(int a) { this.a = a; }
public synchronized void setB(int b) { this.b = b; }
}
若同步整个方法,则setA()的时候无法setB(),setB()时无法setA()。为了提高性能,可以使用不同对象的锁:
public class SharedResouce {
private int a = 0;
private int b = 0;
private Object sync_a = new Object();
private Object sync_b = new Object();
public void setA(int a) {
synchronized(sync_a) {
his.a = a;
}
}
public synchronized void setB(int b) {
synchronized(sync_b) {
this.b = b;
}
}
}
通常,多线程之间需要协调工作。例如,浏览器的一个显示图片的线程displayThread想要执行显示图片的任务,必须等待下载线程 downloadThread将该图片下载完毕。如果图片还没有下载完,displayThread可以暂停,当downloadThread完成了任务后,再通知displayThread“图片准备完毕,可以显示了”,这时,displayThread继续执行。
以上逻辑简单的说就是:如果条件不满足,则等待。当条件满足时,等待该条件的线程将被唤醒。在Java中,这个机制的实现依赖于wait/notify。等待机制与锁机制是密切关联的。例如:
synchronized(obj) {
while(!condition) {
obj.wait();
}
obj.doSomething();
}
当线程A获得了obj锁后,发现条件condition不满足,无法继续下一处理,于是线程A就wait()。
在另一线程B中,如果B更改了某些条件,使得线程A的condition条件满足了,就可以唤醒线程A:
synchronized(obj) {
condition = true;
obj.notify();
}
需要注意的概念是:
# 调用obj的wait(), notify()方法前,必须获得obj锁,也就是必须写在synchronized(obj) {...} 代码段内。
# 调用obj.wait()后,线程A就释放了obj的锁,否则线程B无法获得obj锁,也就无法在synchronized(obj) {...} 代码段内唤醒A。
# 当obj.wait()方法返回后,线程A需要再次获得obj锁,才能继续执行。
# 如果A1,A2,A3都在obj.wait(),则B调用obj.notify()只能唤醒A1,A2,A3中的一个(具体哪一个由JVM决定)。
# obj.notifyAll()则能全部唤醒A1,A2,A3,但是要继续执行obj.wait()的下一条语句,必须获得obj锁,因此,A1,A2,A3只有一个有机会获得锁继续执行,例如A1,其余的需要等待A1释放obj锁之后才能继续执行。
# 当B调用obj.notify/notifyAll的时候,B正持有obj锁,因此,A1,A2,A3虽被唤醒,但是仍无法获得obj锁。直到B退出synchronized块,释放obj锁后,A1,A2,A3中的一个才有机会获得锁继续执行。
前面讲了wait/notify机制,Thread还有一个sleep()静态方法,它也能使线程暂停一段时间。sleep与wait的不同点是: sleep并不释放锁,并且sleep的暂停和wait暂停是不一样的。obj.wait会使线程进入obj对象的等待集合中并等待唤醒。
但是wait()和sleep()都可以通过interrupt()方法打断线程的暂停状态,从而使线程立刻抛出InterruptedException。
如果线程A希望立即结束线程B,则可以对线程B对应的Thread实例调用interrupt方法。如果此刻线程B正在 wait/sleep/join,则线程B会立刻抛出InterruptedException,在catch() {} 中直接return即可安全地结束线程。
需要注意的是,InterruptedException是线程自己从内部抛出的,并不是interrupt()方法抛出的。对某一线程调用 interrupt()时,如果该线程正在执行普通的代码,那么该线程根本就不会抛出InterruptedException。但是,一旦该线程进入到 wait()/sleep()/join()后,就会立刻抛出InterruptedException。
待续。。。。
分享到:
相关推荐
这篇学习笔记将深入探讨Java多线程的核心概念、实现方式以及相关工具的使用。 一、多线程基础 1. 线程与进程:在操作系统中,进程是资源分配的基本单位,而线程是程序执行的基本单位。每个进程至少有一个主线程,...
### Java多线程学习笔记 #### 一、线程的基本概念 在计算机科学中,**线程**(Thread)是程序执行流的最小单位。一个标准的程序只能做一件事情,而通过多线程技术,可以让程序同时处理多个任务。在Java中,线程是...
这篇文档和对应的源代码 博文链接:https://interper56-sohu-com.iteye.com/blog/172303
多线程学习笔记 iOS开发中,多线程是一种常见的技术手段,用于优化应用程序的性能,提升用户体验。多线程的核心是让程序能够并发地执行多个任务,合理地利用设备的计算能力,尤其是在拥有多个核心的处理器上。 ...
java学习笔记2(多线程)java学习笔记2(多线程)
Java多线程编程是开发高并发应用的关键技术之一。在这个学习笔记中,主要讨论了Java中的线程同步机制,包括volatile关键字、synchronized以及Lock接口,特别是ReentrantLock的使用。 首先,对于线程1和线程2的疑惑...
Java多线程是Java编程中的核心概念,它允许并发执行多个任务,提高程序的执行效率。以下是关于Java多线程的详细知识点: 1. **创建线程** - **继承Thread类**:创建一个新的类,该类继承自Thread类,并重写run()...
Java多线程学习笔记之自定义线程池 本篇文章主要介绍了Java多线程学习笔记之自定义线程池,通过深入了解ThreadPoolExecutor这个核心类,我们可以自定义线程池,满足不同的线程池需求。 Java多线程学习笔记之自定义...
Java并发编程学习笔记,研究JAVA并发多线程编程的一本教程,使用并发技术可以开发出并行算法,充分利用多处理器的计算能力,避免硬件资源浪费。目前,在JAVA并发编程方面的论述系统且内容详实的技术资料不太多,Java...
java 多线程学习笔记
线程同步是为了避免多线程环境下的数据竞争问题,Java提供了多种同步机制。同步方法通过`synchronized`关键字修饰,确保同一时间只有一个线程能访问该方法。同步块(Synchronized Block)更灵活,可以指定同步的代码...
基于java的开发源码-java多线程反射泛型及正则表达式学习笔记和源码.zip 基于java的开发源码-java多线程反射泛型及正则表达式学习笔记和源码.zip 基于java的开发源码-java多线程反射泛型及正则表达式学习笔记和源码....
java多线程学习笔记,主要记录多线程的一些基础概念,多线程简单的使用方式
java基础:多线程学习笔记
Java 线程学习笔记 Java 线程创建有两种方法: 1. 继承 Thread 类,重写 run 方法:通过继承 Thread 类并重写 run 方法来创建线程,这种方法可以使线程具有自己的执行逻辑。 2. 实现 Runnable 接口:通过实现 ...
#### 五、Java多线程学习笔记 ##### 1. 线程类 - **Thread类**: - 提供了创建和控制线程的方法。 - 可以通过继承`Thread`类或实现`Runnable`接口来创建线程。 ##### 2. 等待一个线程的结束 - **join()方法**: -...
java学习笔记5(java多线程)java学习笔记5(java多线程)
学习线程介绍Java多线程学习PDF格式Java并发编程的艺术.pdf JAVA并发编程实践.pdf图解Java多线程设计模式-第2版.pdf代码code1是《 Java并发编程的艺术》的源码ThreadDesignPatterns是《图解Java多线程设计模式》第1...