- 浏览: 492105 次
- 性别:
- 来自: 长沙
-
文章分类
最新评论
-
Source_野驴:
...
jsp静态化和伪静态化 -
zidanzzg:
很好的知识,找到了利用异或交换数值的理论支持,谢谢分享
XOR的性质和运算 -
ueseu:
引用(2) DomainDomain域名也是Cookie的一部 ...
Cookie的组成 -
ueseu:
引用Secure取true或者false值。如果为true,那 ...
Cookie的组成 -
liqi___123:
理解得很透彻,谢谢!!
ROLAP、MOLAP和HOLAP联机分析处理区别
浅析求素数算法
时间: 2006-10-27
注意: 如果没有特殊说明, 以下讨论的都是针对n为素数时的时间复杂度
1. 根据概念判断:
如果一个正整数只有两个因子, 1和p,则称p为素数.
bool isPrime(int n) { if(n < 2) return false; for(int i = 2; i < n; ++i) if(n%i == 0) return false; return true; }
时间复杂度O(n).
2. 改进, 去掉偶数的判断
bool isPrime(int n) { if(n < 2) return false; if(n == 2) return true; for(int i = 3; i < n; i += 2) if(n%i == 0) return false; return true; }
时间复杂度O(n/2), 速度提高一倍.
3. 进一步减少判断的范围
定理: 如果n不是素数, 则n有满足1<d<=sqrt(n)的一个因子d.
证明: 如果n不是素数, 则由定义n有一个因子d满足1<d<n.
如果d大于sqrt(n), 则n/d是满足1<n/d<=sqrt(n)的一个因子.
bool isPrime(int n) { if(n < 2) return false; if(n == 2) return true; for(int i = 3; i*i <= n; i += 2) if(n%i == 0) return false; return true; }
时间复杂度O(sqrt(n)/2), 速度提高O((n-sqrt(n))/2).
4. 剔除因子中的重复判断.
例如: 11%3 != 0 可以确定 11%(3*i) != 0.
定理: 如果n不是素数, 则n有满足1<d<=sqrt(n)的一个"素数"因子d.
证明: I1. 如果n不是素数, 则n有满足1<d<=sqrt(n)的一个因子d.
I2. 如果d是素数, 则定理得证, 算法终止.
I3. 令n=d, 并转到步骤I1.
由于不可能无限分解n的因子, 因此上述证明的算法最终会停止.
// primes[i]是递增的素数序列: 2, 3, 5, 7, ... // 更准确地说primes[i]序列包含1->sqrt(n)范围内的所有素数 bool isPrime(int primes[], int n) { if(n < 2) return false; for(int i = 0; primes[i]*primes[i] <= n; ++i) if(n%primes[i] == 0) return false; return true; }
假设n范围内的素数个数为PI(n), 则时间复杂度O(PI(sqrt(n))).
函数PI(x)满足素数定理: ln(x)-3/2 < x/PI(x) < ln(x)-1/2, 当x >= 67时.
因此O(PI(sqrt(n)))可以表示为O(sqrt(x)/(ln(sqrt(x))-3/2)),
O(sqrt(x)/(ln(sqrt(x))-3/2))也是这个算法的空间复杂度.
5. 构造素数序列primes[i]: 2, 3, 5, 7, ...
由4的算法我们知道, 在素数序列已经被构造的情况下, 判断n是否为素数效率很高;
但是, 在构造素数序列本身的时候, 是否也可是达到最好的效率呢?
事实上这是可以的! -- 我们在构造的时候完全可以利用已经被构造的素数序列!
假设我们已经我素数序列: p1, p2, .. pn
现在要判断pn+1是否是素数, 则需要(1, sqrt(pn+1)]范围内的所有素数序列,
而这个素数序列显然已经作为p1, p2, .. pn的一个子集被包含了!
// 构造素数序列primes[] void makePrimes(int primes[], int num) { int i, j, cnt; primes[0] = 2; primes[1] = 3; for(i = 5, cnt = 2; cnt < num; i += 2) { int flag = true; for(j = 1; primes[j]*primes[j] <= i; ++j) { if(i%primes[j] == 0) { flag = false; break; } } if(flag) primes[cnt++] = i; } }
makePrimes的时间复杂度比较复杂, 而且它只有在初始化的时候才被调用一次.
在一定的应用范围内, 我们可以把近似认为makePrimes需要常数时间.
在后面的讨论中, 我们将探讨一种对计算机而言更好的makePrimes方法.
6. 更好地利用计算机资源...
当前的主流PC中, 一个整数的大小为2^32. 如果需要判断2^32大小的数是否为素数,
则可能需要测试[2, 2^16]范围内的所有素数(2^16 == sqrt(2^32)).
由4中提到的素数定理我们可以大概确定[2, 2^16]范围内的素数个数.
由于2^16/(ln(2^16)-1/2) = 6138, 2^16/(ln(2^16)-3/2) = 6834,
我们可以大概估计出[2, 2^16]范围内的素数个数6138 < PI(2^16) < 6834.
在对[2, 2^16]范围内的素数进行统计, 发现只有6542个素数:
p_6542: 65521, 65521^2 = 4293001441 < 2^32, (2^32 = 4294967296)
p_6543: 65537, 65537^2 = 4295098369 > 2^32, (2^32 = 4294967296)
在实际运算时unsigned long x = 4295098369;将发生溢出, 为131073.
在程序中, 我是采用double类型计算得到的结果.
分析到这里我们可以看到, 我们只需要缓冲6543个素数, 我们就可以采用4中的算法
高效率地判断[2, 2^32]如此庞大范围内的素数!
(原本的2^32大小的问题规模现在已经被减小到6543规模了!)
虽然用现在的计算机处理[2, 2^16]范围内的6542个素数已经没有一点问题,
虽然makePrimes只要被运行一次就可以, 但是我们还是考虑一下是否被改进的可能?!
我想学过java的人肯定想把makePrimes作为一个静态的初始化实现, 在C++中也可以
模拟java中静态的初始化的类似实现:
#define NELEMS(x) ((sizeof(x)) / (sizeof((x)[0])))
static int primes[6542+1];
static struct _Init { _Init(){makePrimes(primes, NELEMS(primes);} } _init;
如此, 就可以在程序启动的时候自动掉用makePrimes初始化素数序列.
但, 我现在的想法是: 为什么我们不能在编译的时候调用makePrimes函数呢?
完全可以!!! 代码如下:
// 这段代码可以由程序直接生成 const static int primes[] = { 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103, 107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211, 223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331, 337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449, 457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587, 593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709, 719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853, 857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991, ... 65521, 65537 };
有点不可思议吧, 原本makePrimes需要花费的时间复杂度现在真的变成O(1)了!
(我觉得叫O(0)可能更合适!)
7. 二分法查找
现在我们缓存了前大约sqrt(2^32)/(ln(sqrt(2^32)-3/2))个素数列表, 在判断2^32级别的
素数时最多也只需要PI(sqrt(2^32))次判断(准确值是6543次), 但是否还有其他的方式判断呢?
当素数比较小的时候(不大于2^16), 是否可以直接从缓存的素数列表中直接查询得到呢?
答案是肯定的! 由于primes是一个有序的数列, 因此我们当素数小于2^16时, 我们可以直接
采用二分法从primes中查询得到(如果查询失败则不是素数).
// 缺少的代码请参考前边 #include <stdlib.h> static bool cmp(const int *p, const int *q) { return (*p) - (*q); } bool isPrime(int n) { if(n < 2) return false; if(n == 2) return true; if(n%2 == 0) return false; if(n >= 67 && n <= primes[NELEMS(primes)-1]) { return NULL != bsearch(&n, primes, NELEMS(primes), sizeof(n), cmp); } else { for(int i = 1; primes[i]*primes[i] <= n; ++i) if(n%primes[i] == 0) return false; return true; } }
时间复杂度:
if(n <= primes[NELEMS(primes)-1] && n >= 67): O(log2(NELEMS(primes))) < 13;
if(n > primes[NELEMS(primes)-1]): O(PI(sqrt(n))) <= NELEMS(primes).
8. 素数定理+2分法查找
在7中, 我们对小等于primes[NELEMS(primes)-1]的数采用2分法查找进行判断.
我们之前针对2^32缓冲的6453个素数需要判断的次数为13次(log2(1024*8) == 13).
对于小的素数而言(其实就是2^16范围只内的数), 13次的比较已经完全可以接受了.
不过根据素数定理: ln(x)-3/2 < x/PI(x) < ln(x)-1/2, 当x >= 67时, 我们依然
可以进一步缩小小于2^32情况的查找范围(现在是0到NELEMS(primes)-1范围查找).
我们需要解决问题是(n <= primes[NELEMS(primes)-1):
如果n为素数, 那么它在素数序列可能出现的范围在哪?
---- (n/(ln(n)-1/2), n/(ln(n)-3/2)), 即素数定理!
上面的代码修改如下:
bool isPrime(int n) { if(n < 2) return false; if(n == 2) return true; if(n%2 == 0) return false; int hi = (int)ceil(n/(ln(n)-3/2)); if(n >= 67 && hi < NELEMS(primes)) { int lo = (int)floor(n/(ln(n)-1/2)); return NULL != bsearch(&n, primes+lo, hi-lo, sizeof(n), cmp); } else { for(int i = 1; primes[i]*primes[i] <= n; ++i) if(n%primes[i] == 0) return false; return true; } }
时间复杂度:
if(n <= primes[NELEMS(primes)-1] && n >= 67): O(log2(hi-lo))) < ???;
if(n > primes[NELEMS(primes)-1]): O(PI(sqrt(n))) <= NELEMS(primes).
9. 打包成素数库(给出全部的代码)
到目前为止, 我已经给出了我所知道所有改进的方法(如果有人有更好的算法感谢告诉我).
这里需要强调的一点是, 这里讨论的素数求法是针对0-2^32范围的数而言, 至于像寻找
成百上千位大小的数不在此讨论范围, 那应该算是纯数学的内容了.
代码保存在2个文件: prime.h, prime.cpp.
// file: prime.h #ifndef PRIME_H_2006_10_27_ #define PRIME_H_2006_10_27_ extern int Prime_max(void); // 素数序列的大小 extern int Prime_get (int i); // 返回第i个素数, 0 <= i < Prime_max extern bool Prime_test(int n); // 测试是否是素数, 1 <= n < INT_MAX #endif /////////////////////////////////////////////////////// // file: prime.cpp #include <assert.h> #include <limits.h> #include <math.h> #include <stdlib.h> #include "prime.h" // 计算数组的元素个数 #define NELEMS(x) ((sizeof(x)) / (sizeof((x)[0]))) // 素数序列, 至少保存前6543个素数! static const int primes[] = { 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103, 107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211, 223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331, 337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449, 457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587, 593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709, 719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853, 857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991, ... 65521, 65537 }; // bsearch的比较函数 static int cmp(const void *p, const void *q) { return (*(int*)p) - (*(int*)q); } // 缓冲的素数个数 int Prime_max() { return NELEMS(primes); } // 返回第i个素数 int Prime_get(int i) { assert(i >= 0 && i < NELEMS(primes)); return primes[i]; } // 测试n是否是素数 bool Prime_test(int n) { assert(n > 0); if(n < 2) return false; if(n == 2) return true; if(!(n&1)) return false; // 如果n为素数, 则在序列hi位置之前 int lo, hi = (int)ceil(n/(log(n)-3/2.0)); if(hi < NELEMS(primes)) { // 确定2分法查找的范围 // 只有n >= 67是才满足素数定理 if(n >= 67) lo = (int)floor(n/(log(n)-1/2.0)); else { lo = 0; hi = 19; } // 查找成功则为素数 return NULL != bsearch(&n, primes+lo, hi-lo, sizeof(n), cmp); } else { // 不在保存的素数序列范围之内的情况 for(int i = 1; primes[i]*primes[i] <= n; ++i) if(n%primes[i] == 0) return false; return true; } }
10. 回顾, 以及推广
到这里, 关于素数的讨论基本告一段落. 回顾我们之前的求解过程, 我们会发现
如果缺少数学的基本知识会很难设计好的算法; 但是如果一味地只考虑数学原理,
而忽律了计算机的本质特征, 也会有同样的问题.
一个很常见的例子就是求Fibonacci数列. 当然方法很多, 但是在目前的计算机中
都没有实现的必要!
因为Fibonacci数列本身是指数增长的, 32位的有符号整数所能表示的位置只有前46个:
static const int Fibonacci[] = { 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597, 2584,4181,6765,10946,17711,28657,46368,75025,121393,196418, 317811,514229,832040,1346269,2178309,3524578,5702887,9227465, 14930352,24157817,39088169,63245986,102334155,165580141,267914296, 433494437,701408733,1134903170,1836311903,-1323752223 };
因此, 我只需要把前46个Fibonacci数保存到数组中就可以搞定了!
比如: F(int i) = {return Fibonacci[i];} 非常简单, 效率也非常好.
同样的例子如求阶乘n!, 虽然也有很多数学上的描述, 但是计算机一般都表示不了,
我们直接把能用的计算好放到内存中就可以了.
总之, 许多东西本身是好的, 但是不要被它束缚了!
(完)
发表评论
-
模拟退火算法介绍
2013-05-30 11:53 1745模拟退火算法来源于固体退火原理,将固体加温至充分 ... -
大白话解析模拟退火算法
2013-01-25 06:01 924优化算法入门系列文章目录(更新中): 1. 模拟退火算 ... -
五个免费开源的数据挖掘软件
2013-01-22 12:56 1438Orange Orange 是一个基于组件的数 ... -
SPSS 19.01多国语言版破解版(包括简体中文)
2012-08-13 13:43 3094源地址:http://hi.baidu.com/kingz ... -
失血模型-贫血模型-充血模型-胀血模型
2012-07-20 13:21 2152一、失血模型 失血模型简单来说,就是domain ob ... -
NTFS的忠实秘书—USN日志
2012-07-20 11:24 1666最近,在江湖中出现了一匹黑马,名为Everything,用它 ... -
UltraEdit 与Unix 正则表达式
2011-11-18 14:21 1116UltraEdit 允许在搜索菜单 ... -
CPU设计原理
2011-08-09 14:30 2869序言 也许很多 ... -
XOR的性质和运算
2011-07-10 02:06 9131异或是一种基于二进制的位运算,用符号XOR或者 ^ 表示, ... -
贫血/充血模型的解释以及一些经验
2011-06-18 13:33 1226为了补大家的遗憾,在此总结下ROBBIN的领域模型的一些观点和 ... -
PowerDesigner + 反向工程 + 数据字典
2011-05-12 10:58 1962操作步骤: 1. 打开 PowerDesinger ... -
软件开发和设计中的30条建议
2011-03-12 19:31 7951) 类名首字母应该大写。字段、方法以及对象(句柄)的首字母应 ... -
oschina技术实现
2011-03-10 14:15 1345简单说说 OsChina 的技术架构 OSChin ... -
编码字符集和字符集编码
2011-02-26 17:18 1110ASCII及相关标准 ... -
布隆过滤器(Bloom Filter)
2011-01-07 13:58 992在日常生活中,包括在 ... -
海明码的初识
2010-10-20 10:53 5551海明码是一位纠错码,即如果数据在传输过程中有一位出错 ... -
素数测试算法(基于Miller-Rabin的MC算法)
2010-10-19 15:26 3311在以往判断一个数n是 ... -
常用正则表达式[收藏]
2010-05-20 15:16 855"^\d+$" //非负整数(正整数 + ... -
RBAC基于角色的访问控制
2010-03-29 22:26 1290基于角色的访问 ... -
java各种模式的有趣见解
2010-03-09 15:46 6821、FACTORY—追MM少不了请 ...
相关推荐
5. **[原创]浅析求素数算法 - LinuxSir_Org.mht**:素数检测是数论中的基础问题,也是构建其他复杂算法的基础,如素数筛法、Miller-Rabin测试等。此文档可能介绍了不同的求素数算法及其优缺点。 6. **大整数四则...
随机数中素数算法的应用学习程序假设只局限在素数相关定义方面就没有实际的意义了,有时候可能关系到一些深度方面的问题。下面将通过一组随机数来进一步对素数的认识(它们的取值范围是从负300~正300)。分析:我们...
RSA 的安全性主要基于大整数因子分解的困难性,即找到两个大素数的乘积很容易,但将其分解回原来的两个素数却极其困难,这为加密提供了坚实的基础。 在物联网(IoT)中,数据传输的安全性至关重要,因为物联网设备...
素数筛选法是一种用于找出一定范围内所有素数的算法。素数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的数。素数在数论中占有重要地位,尤其是在加密算法中,比如RSA算法就是基于大整数的因式分解难题...
本篇文章将深入浅析如何使用Java编程实现RSA算法的过程。 1. RSA算法原理 RSA算法基于两个大素数的乘积难以因式分解的数学难题。公钥是由这两个大素数的乘积以及欧拉函数φ(n)(其中n为两个素数之积)计算出的模反...
**RSA算法浅析** RSA(Rivest-Shamir-Adleman)是一种非对称加密算法,由三位数学家Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,是现代密码学的基石之一。它的主要特点是公钥和私钥的使用,使得数据加密...