1.基本概念
1.1 稳定排序(stable sort)和非稳定排序
稳定排序是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,。反之,就是非稳定的排序。比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。
1.2 内排序( internal sorting )和外排序( external sorting)
在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
1.3 算法的时间复杂度和空间复杂度
所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
2.几种常见算法
2.1 冒泡排序(Bubble Sort)
冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
冒泡排序是稳定的,算法时间复杂度是O(n ^2)。
2.2 选择排序(Selection Sort)
选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
选择排序是不稳定的,算法复杂度是O(n ^2 )。
2.3 插入排序 (Insertion Sort)
插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。
直接插入排序是稳定的,算法时间复杂度是O(n ^2) 。
2.4 堆排序
堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
堆排序是不稳定的,算法时间复杂度O(nlog n)。
2.5 归并排序
设有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。
其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。
2.6 快速排序
快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理它左右两边的数,直到基准点的左右只有一个元素为止。
快速排序是不稳定的,最理想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。
2.7 希尔排序
在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为 增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。
希尔排序是不稳定的,其时间复杂度为O(n ^2)。
表一 各种排序比较
排序类别
时间复杂度
空间复杂度
稳定
1
插入排序
O(n2)
1
√
2
希尔排序
O(n2)
1
×
3
冒泡排序
O(n2)
1
√
4
选择排序
O(n2)
1
×
5
快速排序
O(Nlogn)
O(logn)
×
6
堆排序
O(Nlogn)
1
×
7
归并排序
O(Nlogn)
O(n)
√
分享到:
相关推荐
本文将深入探讨几种常见的排序算法,并分析它们的时间复杂度,以帮助理解不同排序算法的效率和适用场景。源代码文件"比较各种排序的复杂度.c"正是实现这一目标的实践示例。 1. 冒泡排序 (Bubble Sort) 冒泡排序是一...
排序算法时间复杂度比较 本文将比较几种排序算法的时间复杂度,包括快速排序、选择排序、直接插入排序和堆排序算法,并在排序数据中快速查找某一数据,给出查找是否成功,以及数据所在的位置信息。 在详细设计中,...
包含排序类型有以下几种:插入排序,交换排序,选择排序,归并排序,基数排序
本文将深入探讨C++中几种常见的排序算法,包括它们的原理、适用场景、时间与空间复杂度以及实际应用。 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法,通过重复遍历待排序的数列,一次比较两个元素,...
以下是对选择排序、冒泡排序、归并排序、快速排序和插入排序这五种常见排序算法的详细介绍,以及如何分析它们的时间复杂度。 1. **选择排序(Selection Sort)** - 原理:选择排序是一种简单直观的排序算法,它...
1. 桶内排序的时间复杂度:如果每个桶都使用插入排序,那么每个桶的时间复杂度为O((n/k)²),因为插入排序在最坏情况下需要O(n²)的时间。所以,所有桶的总时间复杂度为O(k * (n/k)²) = O(n²/k)。 2. 合并桶的...
各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。试通过随机的数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
比较了两种排序的时间复杂度,序列一般大于10000,采用非递归的快速排序
本文将深入探讨基于C语言实现的八种常见排序算法,并分析它们的时间复杂度,旨在帮助读者更好地理解各种排序方法的优劣。 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法,它重复地遍历待排序的数列,一...
### 排序算法时间复杂度的研究 #### 引言 排序是计算机科学中的基础操作之一,主要用于对数据集中的元素按照特定的顺序进行排列。排序算法的效率直接关系到计算机程序的整体性能。根据数据是否完全加载到内存中,...
在实际应用中,对于大规模数据的排序,我们通常会选择时间复杂度更低的算法,如快速排序、归并排序或堆排序等。这些算法在平均情况下能提供O(n log n)的时间复杂度,显著优于选择排序。然而,理解不同排序算法的时间...
总的来说,快速排序和归并排序是排序算法中的重要成员,它们在时间和空间复杂度上的分析对于理解排序算法的效率至关重要。深入理解和掌握这些算法有助于优化代码性能,提高软件系统的整体运行效率。
### 各种排序算法的稳定性和时间复杂度总结 #### 排序算法的稳定性与时间复杂度概述 在计算机科学中,排序算法是基础且重要的组成部分,用于将一系列数据按照特定顺序排列。排序算法的效率通常由其时间复杂度决定...
常用排序算法时间复杂度、空间复杂度总结。包括:冒泡排序、快速排序、选择排序、堆排序、插入排序、Shell排序、归并排序、基数排序。
稳定性和时间复杂度是评估排序算法性能的两个关键指标。 【稳定排序算法】指的是在排序过程中,相等元素的相对顺序不会改变。例如,冒泡排序、插入排序、归并排序和基数排序都是稳定的。冒泡排序通过相邻元素的比较...
排序算法的效率是衡量其性能的关键指标,通常由时间复杂度来衡量。以下是标题和描述中提到的12种排序算法及其时间复杂度和稳定性特点的详细解释: 1. 计数排序(Counting Sort): 这是一种非基于比较的排序算法,...
各种排序时空复杂度比较图
在计算机科学领域,排序算法是数据结构课程中的核心部分,其性能主要由时间复杂度来衡量。时间复杂度是分析算法效率的一种方式,它描述了算法执行时间与输入数据量之间的关系。本主题将深入探讨选择排序、冒泡排序和...
本文将深入探讨两种经典的排序算法——插入排序和归并排序,并提供C++实现的源代码,同时对这两种算法的复杂度进行分析。 插入排序是一种简单直观的排序算法,其基本思想是将待排序的数组分为已排序区间和未排序...
直接插入排序的时间复杂度为O(n^2),其中n是待排序元素的数量。这是因为对于每个待插入元素,都需要进行至多n-1次比较。直接插入排序的空间复杂度为O(1),因为它不需要额外的存储空间。此外,直接插入排序是稳定的,...