- 浏览: 2045985 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (795)
- java (263)
- 聚类搜索引擎 (9)
- 经验之谈 (67)
- DSP (3)
- C++ (140)
- Linux (37)
- SNMP (6)
- Python (6)
- 数据库 (61)
- 网络 (20)
- 算法 (15)
- 设计模式 (4)
- 笔试题 (38)
- 散文 (35)
- 数据结构 (9)
- 银行知识 (0)
- 榜样 (9)
- Lucene (15)
- Heritrix (6)
- MetaSeeker (0)
- netbeans (12)
- php (3)
- 英语 (8)
- DB2 (0)
- java基础 (5)
- mongodb & hadoop (4)
- Javascript (7)
- Spring (4)
- ibatis & myibatis (1)
- velocity (1)
- 微服务 (0)
- paddle (1)
- 第三方 (0)
- 知识沉淀 (1)
- 建模 (0)
最新评论
-
0372:
标示对java很陌生!
中文乱码解决的4种方式 -
梦留心痕:
Java中\是转意字符, 可是你的这句话我没看懂,只要把得到的 ...
java中如何忽略字符串中的转义字符--转载 -
yanjianpengit:
[b][/b]
java为什么非静态内部类里面不能有静态成员 -
springdata-jpa:
可以参考最新的文档:如何在eclipse jee中检出项目并转 ...
eclipse 如何把java项目转成web项目 -
qq1130127172:
,非常好。
(转)SpringMVC 基于注解的Controller @RequestMapping @RequestParam..
编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。一个字符串可以通过增加一个字符,删除一个字符,替换一个字符得到另外一个字符串,假设,我们把从字符串A转换成字符串B,前面3种操作所执行的最少次数称为AB相似度
如 abc adc 度为 1
ababababa babababab 度为 2
abcd acdb 度为2
1 | Set n to be the length of s. Set m to be the length of t. If n = 0, return m and exit. If m = 0, return n and exit. Construct a matrix containing 0..m rows and 0..n columns. |
2 | Initialize the first row to 0..n. Initialize the first column to 0..m. |
3 | Examine each character of s (i from 1 to n). |
4 | Examine each character of t (j from 1 to m). |
5 | If s[i] equals t[j], the cost is 0. If s[i] doesn't equal t[j], the cost is 1. |
6 | Set cell d[i,j] of the matrix equal to the minimum of: a. The cell immediately above plus 1: d[i-1,j] + 1. b. The cell immediately to the left plus 1: d[i,j-1] + 1. c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost. |
7 | After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m]. |
Example
This section shows how the Levenshtein distance is computed when the source string is "GUMBO" and the target string is "GAMBOL".
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | |||||
A | 2 | |||||
M | 3 | |||||
B | 4 | |||||
O | 5 | |||||
L | 6 |
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | ||||
A | 2 | 1 | ||||
M | 3 | 2 | ||||
B | 4 | 3 | ||||
O | 5 | 4 | ||||
L | 6 | 5 |
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | |||
A | 2 | 1 | 1 | |||
M | 3 | 2 | 2 | |||
B | 4 | 3 | 3 | |||
O | 5 | 4 | 4 | |||
L | 6 | 5 | 5 |
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | 2 | ||
A | 2 | 1 | 1 | 2 | ||
M | 3 | 2 | 2 | 1 | ||
B | 4 | 3 | 3 | 2 | ||
O | 5 | 4 | 4 | 3 | ||
L | 6 | 5 | 5 | 4 |
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | 2 | 3 | |
A | 2 | 1 | 1 | 2 | 3 | |
M | 3 | 2 | 2 | 1 | 2 | |
B | 4 | 3 | 3 | 2 | 1 | |
O | 5 | 4 | 4 | 3 | 2 | |
L | 6 | 5 | 5 | 4 | 3 |
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | 2 | 3 | 4 |
A | 2 | 1 | 1 | 2 | 3 | 4 |
M | 3 | 2 | 2 | 1 | 2 | 3 |
B | 4 | 3 | 3 | 2 | 1 | 2 |
O | 5 | 4 | 4 | 3 | 2 | 1 |
L | 6 | 5 | 5 | 4 | 3 | 2 |
Levenshtein distance可以用来:
Spell checking(拼写检查)
Speech recognition(语句识别)
DNA analysis(DNA分析)
Plagiarism detection(抄袭检测)
LD用m*n的矩阵存储距离值。算法大概过程:
str1或str2的长度为0返回另一个字符串的长度。
初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
扫描两字符串(n*m级的),如果:str1[i] == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i][j]赋于d[i-1][j]+1 、d[i][j-1]+1、d[i-1][j-1]+temp三者的最小值。
扫描完后,返回矩阵的最后一个值即d[n][m]
最后返回的是它们的距离。怎么根据这个距离求出相似度呢?因为它们的最大距离就是两字符串长度的最大值。对字符串不是很敏感。现我把相似度计算公式定为1-它们的距离/字符串长度最大值。
private int ComputeDistance (string s, string t) { int n=s.Length; int m=t.Length; int[,] distance=new int[n + 1, m + 1]; // matrix int cost=0; if(n == 0) return m; if(m == 0) return n; //init1 for(int i=0; i <= n; distance[i, 0]=i++); for(int j=0; j <= m; distance[0, j]=j++); //find min distance for(int i=1; i <= n; i++) { for(int j=1; j <= m;j++) { cost=(t.Substring(j - 1, 1) == s.Substring(i - 1, 1) ? 0 : 1); distance[i,j]=Min3(distance[i - 1, j] + 1, distance[i, j - 1] + 1, distance[i - 1, j - 1] + cost); } } return distance[n, m]; }
发表评论
-
DLL中导出函数的声明有两种方式:
2012-11-12 16:42 1863DLL中导出函数的声明有两种方式: 一种方式是:在函数声明中 ... -
k-means算法的C++实现
2011-04-05 11:38 2343k-means算法的C++实现: http://www.ku ... -
main()中的参数
2010-10-31 10:41 1540所有的应用程序都是从以main函数作为入口, 而mai ... -
static作用
2010-10-26 19:15 2390转自(from http://www.cnb ... -
mmap函数
2010-10-25 22:41 1915mmap函数的使用方法 UNIX ... -
C语言中三种内存分配方式
2010-10-25 20:23 01.malloc 原型:extern void *ma ... -
位拷贝和值拷贝
2010-10-23 15:37 1601为了便于说明我们以String类为例: 首先定义String ... -
(转帖)把类的析构函数写成虚函数的用意
2010-10-23 15:10 1702#include <iostream.h> cl ... -
动态规划/贪心算法----0/1背包问题AND普通背包问题
2010-10-23 14:03 6829两个背包问题都是比较典型的问题,对这两种算法的理解有很好的帮助 ... -
netstat, nslookup, finger, ping命令
2010-10-22 17:13 1535Netstat用于显示与IP、TCP ... -
C++返回值
2010-10-22 16:53 1551C++函数返回值: (1)正常情况下,函数的参数要复制一份在 ... -
switch语句后的表达式的值
2010-10-22 16:23 1844一般格式: switch (表达式) { case 常量 ... -
C++四种强制类型转换
2010-10-19 11:45 1579显式类型转换又被称之 ... -
C++四种强制类型转化的区别
2010-10-19 11:43 1359先介绍const_cast和reinterpret_cast: ... -
Visual C++线程同步技术剖析:临界区,时间,信号量,互斥量
2010-10-18 14:24 1835使线程同步 在程序中使用多线程时,一般很少有多个线程能在其 ... -
(转)临界区,互斥量,信号量,事件的区别
2010-10-18 14:22 1774四种进程或线程同步互斥的控制方法1、临界区:通过对多线程的串行 ... -
(转)在C++中实现同步锁,类似synchronize(object){....}
2010-10-18 13:49 1886在做C++的项目中发现, ... -
C++线程同步
2010-10-18 13:46 1619线程同步是多 ... -
C++多线程编程
2010-10-18 10:56 1755今天我给大家讲一讲C++ ... -
关于C++对函数传参与函数返回值进行引用传递的详解
2010-10-16 22:51 4063关于C++对函数传参与函数返回值进行引用传递的详解 ...
相关推荐
《使用Delphi实现Levenshtein算法:计算字符串相似度》 在信息技术领域,字符串处理是常见的任务之一,其中计算两个字符串的相似度是尤为重要的一个环节。Levenshtein算法,也称为编辑距离算法,就是用于衡量两个...
在计算机科学领域,字符串相似度比较算法是一种用于评估两个字符串之间相似程度的技术。这些算法广泛应用于文本处理、信息检索、生物信息学等多个领域。当我们要判断两个字符串是否含有相同或相近的信息时,这类算法...
在本文中,我们将讨论一种常用的字符串相似度算法:Levenshtein Distance。 什么是Levenshtein Distance? Levenshtein Distance(LD)是一种衡量两个字符串之间相似度的方法,衡量的是将源字符串(s)转换为目标...
Levenshtein算法,也称为编辑距离算法,是由俄国数学家Vladimir Levenshtein在1965年提出的一种衡量两个字符串相似度的方法。这个算法基于动态规划原理,可以计算出将一个字符串转换成另一个字符串所需要的最少单...
在IT领域,字符串相似度算法是一种非常重要的工具,特别是在数据挖掘、信息检索、文本分类以及自然语言处理等应用中。这个小例子旨在介绍如何通过计算字符串间的相似度来进行模糊匹配。我们将探讨几种常见的字符串...
**字符串相似度算法——Levenshtein Distance(编辑距离)** 在信息技术和计算机科学领域,字符串相似度计算是一个重要的概念,特别是在文本处理、搜索引擎优化、数据校验和生物信息学等多个场景中。Levenshtein ...
总之,Delphi提供了丰富的工具和功能来处理字符串相似度计算,开发者可以根据具体需求选择合适的算法并进行实现。在实际项目中,理解和运用这些算法可以帮助我们更好地理解和比较文本数据,提升应用程序的功能和用户...
### MySQL 计算字符串相似度 #### 背景与需求 在许多应用场景中,我们需要对两个字符串进行相似度比较,比如搜索引擎中的关键词匹配、文本分析中的近义词识别等。MySQL 提供了多种方法来实现字符串相似度的计算,...
Levenshtein库提供了高效的算法来计算这个距离,并且可以用来评估字符串之间的相似度。在Python中,你可以通过以下方式导入并使用这个库: ```python from Levenshtein import distance ``` 然后,你可以用`...
Java字符串相似度算法是...总之,Java字符串相似度算法,尤其是Levenshtein距离的实现,为处理文本相似性问题提供了一个实用的工具。了解并掌握这些算法,对于进行文本分析、信息匹配和数据清理等任务来说至关重要。
本文将深入探讨字符串相似度比较的概念、常用算法以及在JavaScript中的实现,同时关注潜在的性能和内存管理问题。 字符串相似度比较旨在量化两个或多个字符串之间的相似程度,通常以百分比形式表示。这种比较不仅...
Levenshtein Distance(简称LD),又称编辑距离,是衡量两个字符串相似度的一种方法。这个概念由俄国科学家Vladimir Levenshtein在1965年提出,因此得名。 编辑距离定义了将一个字符串转换成另一个字符串所需的最少...
一个实现不同字符串相似度和距离度量的库。目前实现了十几种算法(包括 Levenshtein 编辑距离和兄弟、Jaro-Winkler、最长公共子序列、余弦相似度等)。查看下面的汇总表以获取完整列表... python字符串相似度 下载 ...
在IT领域,字符串相似度匹配是一项重要的技术,广泛应用于数据清洗、文本检索、信息过滤、推荐系统等多个场景。本主题将深入探讨“两个字符串相似度匹配”的概念、方法及其实现。 字符串相似度匹配旨在量化两个字符...
总的来说,字符串相似度比较是信息技术中的基础工具,深入理解和灵活运用这些算法能帮助我们解决多种实际问题。通过“字符串相似度比较T-2021-7-1.rar”中的内容,我们可以系统学习这一领域的知识,提升处理文本数据...
总之,最短编辑距离算法是计算字符串相似度的一种基础且重要的方法,它在文本处理领域有着广泛的应用。理解和掌握这一算法,对于开发相关的软件功能,如自动纠错、搜索引擎优化等,都是非常有益的。
Levenshtein距离算法是一种衡量两个字符串相似度的数学方法,由俄国科学家Vladimir Levenshtein在1965年提出。这个算法通过计算将一个字符串转换成另一个字符串所需的最少单字符编辑(插入、删除或替换)次数来评估...
两个字符串的相似度算法实现——编辑距离之Levenshtein距离
C#,字符串相似度的莱文斯坦距离(Levenshtein Distance)算法与源代码 莱文斯坦距离(Levenshtein Distance)用于衡量两个字符串之间的相似度。 莱文斯坦距离以俄国科学家(Vladimir I. Levenshtein)命名,他于...