- 浏览: 550808 次
- 性别:
- 来自: 杭州
-
文章分类
最新评论
-
wa114d:
楼主工作几年了,好厉害
一个面试官对面试问题的分析 -
wobuxiaole:
Good,非常好
30岁前男人需要完成的事 -
小逗逗:
Good,非常好
30岁前男人需要完成的事 -
invincibleLiu:
好帖,要顶!(别投我隐藏啊,这是对BBS最原始一种支持)
Java:synchronized修饰符在静态方法与非静态方法上的区别 -
fayedShih:
第三题,不知道对不对
import java.util.con ...
企业牛逼面试题目 高手进来讨论答题
命令模式也是开发中常见的一个模式,也不是太难,比较简单,下面来详细的写一下命令模式。
命令模式(Command)1
1. 场景问题
1.1 如何开机
估计有些朋友看到这个标题会非常奇怪,电脑装配好了,如何开机?不就是按下启动按钮就可以了吗?难道还有什么玄机不成。
对于使用电脑的客户——就是我们来说,开机确实很简单,按下启动按钮,然后耐心等待就可以了。但是当我们按下启动按钮过后呢?谁来处理?如何处理?都经历了怎样的过程,才让电脑真正的启动起来,供我们使用。
先一起来简单的认识一下电脑的启动过程,了解一下即可。
•当我们按下启动按钮,电源开始向主板和其它设备供电
•主板的系统BIOS(基本输入输出系统)开始加电后自检
•主板的BIOS会依次去寻找显卡等其它设备的BIOS,并让它们自检或者初始化
•开始检测CPU、内存、硬盘、光驱、串口、并口、软驱、即插即用设备等等
•BIOS更新ESCD(扩展系统配置数据),ESCD是BIOS和操作系统交换硬件配置数据的一种手段
•等前面的事情都完成后,BIOS才按照用户的配置进行系统引导,进入操作系统里面,等到操作系统装载并初始化完毕,就出现我们熟悉的系统登录界面了。
1.2 与我何干
讲了一通电脑启动的过程,有些朋友会想,这与我何干呢?
没错,看起来这些硬件知识跟你没有什么大的关系,但是,如果现在提出一个要求:请你用软件把上面的过程表现出来,你该如何实现?
首先把上面的过程总结一下,主要就这么几个步骤:首先加载电源,然后是设备检查,再然后是装载系统,最后电脑就正常启动了。可是谁来完成这些过程?如何完成?
不能让使用电脑的客户——就是我们来做这些工作吧,真正完成这些工作的是主板,那么客户和主板如何发生联系呢?现实中,是用连接线把按钮连接到主板上的,这样当客户按下按钮的时候,就相当于发命令给主板,让主板去完成后续的工作。
另外,从客户的角度来看,开机就是按下按钮,不管什么样的主板都是一样的,也就是说,客户只管发出命令,谁接收命令,谁实现命令,如何实现,客户是不关心的。
1.3 有何问题
把上面的问题抽象描述一下:客户端只是想要发出命令或者请求,不关心请求的真正接收者是谁,也不关心具体如何实现,而且同一个请求的动作可以有不同的请求内容,当然具体的处理功能也不一样,请问该怎么实现?
2 解决方案
2.1 命令模式来解决
用来解决上述问题的一个合理的解决方案就是命令模式。那么什么是命令模式呢?
(1)命令模式定义
将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可撤销的操作。
(2)应用命令模式来解决的思路
首先来看看实际电脑的解决方案
先画个图来描述一下,看看实际的电脑是如何处理上面描述的这个问题的,如图1所示:
图1 电脑操作示意图
当客户按下按钮的时候,按钮本身并不知道如何处理,于是通过连接线来请求主板,让主板去完成真正启动机器的功能。
这里为了描述它们之间的关系,把主板画到了机箱的外面。如果连接线连接到不同的主板,那么真正执行按钮请求的主板也就不同了,而客户是不知道这些变化的。
通过引入按钮和连接线,来让发出命令的客户和命令的真正实现者——主板完全解耦,客户操作的始终是按钮,按钮后面的事情客户就统统不管了。
要用程序来解决上面提出的问题,一种自然的方案就是来模拟上述解决思路。
在命令模式中,会定义一个命令的接口,用来约束所有的命令对象,然后提供具体的命令实现,每个命令实现对象是对客户端某个请求的封装,对应于机箱上的按钮,一个机箱上可以有很多按钮,也就相当于会有多个具体的命令实现对象。
在命令模式中,命令对象并不知道如何处理命令,会有相应的接收者对象来真正执行命令。就像电脑的例子,机箱上的按钮并不知道如何处理功能,而是把这个请求转发给主板,由主板来执行真正的功能,这个主板就相当于命令模式的接收者。
在命令模式中,命令对象和接收者对象的关系,并不是与生俱来的,需要有一个装配的过程,命令模式中的Client对象就来实现这样的功能。这就相当于在电脑的例子中,有了机箱上的按钮,也有了主板,还需要有一个连接线把这个按钮连接到主板上才行。
命令模式还会提供一个Invoker对象来持有命令对象,就像电脑的例子,机箱上会有多个按钮,这个机箱就相当于命令模式的Invoker对象。这样一来,命令模式的客户端就可以通过Invoker来触发并要求执行相应的命令了,这也相当于真正的客户是按下机箱上的按钮来操作电脑一样。
2.2 模式结构和说明
命令模式的结构如图2所示:
图2 命令模式结构图
Command:
定义命令的接口,声明执行的方法。
ConcreteCommand:
命令接口实现对象,是“虚”的实现;通常会持有接收者,并调用接收者的功能来完成命令要执行的操作。
Receiver:
接收者,真正执行命令的对象。任何类都可能成为一个接收者,只要它能够实现命令要求实现的相应功能。
Invoker:
要求命令对象执行请求,通常会持有命令对象,可以持有很多的命令对象。这个是客户端真正触发命令并要求命令执行相应操作的地方,也就是说相当于使用命令对象的入口。
Client:
创建具体的命令对象,并且设置命令对象的接收者。注意这个不是我们常规意义上的客户端,而是在组装命令对象和接收者,或许,把这个Client称为装配者会更好理解,因为真正使用命令的客户端是从Invoker来触发执行。
2.3 命令模式示例代码
(1)先来看看命令接口的定义,示例代码如下:
(2)再来看看具体的命令实现对象,示例代码如下:
(3)再来看看接收者对象的实现示意,示例代码如下:
(5)再来看看Client的实现,注意这个不是我们通常意义上的测试客户端,主要功能是要创建命令对象并设定它的接收者,因此这里并没有调用执行的代码,示例代码如下:
2.4 使用命令模式来实现示例
要使用命令模式来实现示例,需要先把命令模式中所涉及的各个部分,在实际的示例中对应出来,然后才能按照命令模式的结构来设计和实现程序。根据前面描述的解决思路,大致对应如下:
•机箱上的按钮就相当于是命令对象
•机箱相当于是Invoker
•主板相当于接收者对象
•命令对象持有一个接收者对象,就相当于是给机箱的按钮连上了一根连接线
•当机箱上的按钮被按下的时候,机箱就把这个命令通过连接线发送出去。
主板类才是真正实现开机功能的地方,是真正执行命令的地方,也就是“接收者”。命令的实现对象,其实是个“虚”的实现,就如同那根连接线,它哪知道如何实现啊,还不就是把命令传递给连接线连到的主板。
使用命令模式来实现示例的结构如图3所示:
图3 使用命令模式来实现示例的结构示意图
还是来看看示例代码,会比较清楚。
(1)定义主板
根据前面的描述,我们会发现,真正执行客户命令或请求的是主板,也只有主板才知道如何去实现客户的命令,因此先来抽象主板,把它用对象描述出来。
先来定义主板的接口,最起码主板会有一个能开机的方法,示例代码如下:
定义了接口,那就接着定义实现类吧,定义两个主板的实现类,一个是技嘉主板,一个是微星主板,现在的实现是一样的,但是不同的主板对同一个命令的操作可以是不同的,这点大家要注意。由于两个实现基本一样,就示例一个,示例代码如下:
微星主板的实现和这个完全一样,只是把技嘉改名成微星了。
(2)定义命令接口和命令的实现
对于客户来说,开机就是按下按钮,别的什么都不想做。把用户的这个动作抽象一下,就相当于客户发出了一个命令或者请求,其它的客户就不关心了。为描述客户的命令,现定义出一个命令的接口,里面只有一个方法,那就是执行,示例代码如下:
有了命令的接口,再来定义一个具体的实现,其实就是模拟现实中机箱上按钮的功能,因为我们按下的是按钮,但是按钮本身是不知道如何启动电脑的,它需要把这个命令转给主板,让主板去真正执行开机功能。示例代码如下:
由于客户不想直接和主板打交道,而且客户根本不知道具体的主板是什么,客户只是希望按下启动按钮,电脑就正常启动了,就这么简单。就算换了主板,客户还是一样的按下启动按钮就可以了。
换句话说就是:客户想要和主板完全解耦,怎么办呢?
这就需要在客户和主板之间建立一个中间对象了,客户发出的命令传递给这个中间对象,然后由这个中间对象去找真正的执行者——主板,来完成工作。
很显然,这个中间对象就是上面的命令实现对象,请注意:这个实现其实是个虚的实现,真正的实现是主板完成的,在这个虚的实现里面,是通过转调主板的功能来实现的,主板对象实例,是从外面传进来的。
(3)提供机箱
客户需要操作按钮,按钮是放置在机箱之上的,所以需要把机箱也定义出来,示例代码如下:
(4)客户使用按钮
抽象好了机箱和主板,命令对象也准备好了,客户想要使用按钮来完成开机的功能,在使用之前,客户的第一件事情就应该是把按钮和主板组装起来,形成一个完整的机器。
在实际生活中,是由装机工程师来完成这部分工作,这里为了测试简单,直接写在客户端开头了。机器组装好过后,客户应该把与主板连接好的按钮对象放置到机箱上,等待客户随时操作。把这个过程也用代码描述出来,示例代码如下:
运行一下,看看效果,输出如下:
你可以给命令对象组装不同的主板实现类,然后再次测试,看看效果。
事实上,你会发现,如果对象结构已经组装好了过后,对于真正的客户端,也就是真实的用户而言,任务就是面对机箱,按下机箱上的按钮,就可以执行开机的命令了,实际生活中也是这样的。
(5)小结
如同前面的示例,把客户的开机请求封装成为一个OpenCommand对象,客户的开机操作就变成了执行OpenCommand对象的方法了?如果还有其它的命令对象,比如让机器重启的ResetCommand对象;那么客户按下按钮的动作,就可以用这不同的命令对象去匹配,也就是对客户进行参数化。
用大白话描述就是:客户按下一个按钮,到底是开机还是重启,那要看参数化配置的是哪一个具体的按钮对象,如果参数化的是开机的命令对象,那就执行开机的功能,如果参数化的是重启的命令对象,那就执行重启的功能。虽然按下的是同一个按钮,但是请求是不同的,对应执行的功能也就不同了。
在模式讲解的时候会给大家一个参数化配置的示例,这里就不多讲了。至于对请求排队或记录请求日志,以及支持可撤销的操作等功能,也放到模式讲解里面。
未完待续......
命令模式(Command)1
1. 场景问题
1.1 如何开机
估计有些朋友看到这个标题会非常奇怪,电脑装配好了,如何开机?不就是按下启动按钮就可以了吗?难道还有什么玄机不成。
对于使用电脑的客户——就是我们来说,开机确实很简单,按下启动按钮,然后耐心等待就可以了。但是当我们按下启动按钮过后呢?谁来处理?如何处理?都经历了怎样的过程,才让电脑真正的启动起来,供我们使用。
先一起来简单的认识一下电脑的启动过程,了解一下即可。
•当我们按下启动按钮,电源开始向主板和其它设备供电
•主板的系统BIOS(基本输入输出系统)开始加电后自检
•主板的BIOS会依次去寻找显卡等其它设备的BIOS,并让它们自检或者初始化
•开始检测CPU、内存、硬盘、光驱、串口、并口、软驱、即插即用设备等等
•BIOS更新ESCD(扩展系统配置数据),ESCD是BIOS和操作系统交换硬件配置数据的一种手段
•等前面的事情都完成后,BIOS才按照用户的配置进行系统引导,进入操作系统里面,等到操作系统装载并初始化完毕,就出现我们熟悉的系统登录界面了。
1.2 与我何干
讲了一通电脑启动的过程,有些朋友会想,这与我何干呢?
没错,看起来这些硬件知识跟你没有什么大的关系,但是,如果现在提出一个要求:请你用软件把上面的过程表现出来,你该如何实现?
首先把上面的过程总结一下,主要就这么几个步骤:首先加载电源,然后是设备检查,再然后是装载系统,最后电脑就正常启动了。可是谁来完成这些过程?如何完成?
不能让使用电脑的客户——就是我们来做这些工作吧,真正完成这些工作的是主板,那么客户和主板如何发生联系呢?现实中,是用连接线把按钮连接到主板上的,这样当客户按下按钮的时候,就相当于发命令给主板,让主板去完成后续的工作。
另外,从客户的角度来看,开机就是按下按钮,不管什么样的主板都是一样的,也就是说,客户只管发出命令,谁接收命令,谁实现命令,如何实现,客户是不关心的。
1.3 有何问题
把上面的问题抽象描述一下:客户端只是想要发出命令或者请求,不关心请求的真正接收者是谁,也不关心具体如何实现,而且同一个请求的动作可以有不同的请求内容,当然具体的处理功能也不一样,请问该怎么实现?
2 解决方案
2.1 命令模式来解决
用来解决上述问题的一个合理的解决方案就是命令模式。那么什么是命令模式呢?
(1)命令模式定义
将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可撤销的操作。
(2)应用命令模式来解决的思路
首先来看看实际电脑的解决方案
先画个图来描述一下,看看实际的电脑是如何处理上面描述的这个问题的,如图1所示:

图1 电脑操作示意图
当客户按下按钮的时候,按钮本身并不知道如何处理,于是通过连接线来请求主板,让主板去完成真正启动机器的功能。
这里为了描述它们之间的关系,把主板画到了机箱的外面。如果连接线连接到不同的主板,那么真正执行按钮请求的主板也就不同了,而客户是不知道这些变化的。
通过引入按钮和连接线,来让发出命令的客户和命令的真正实现者——主板完全解耦,客户操作的始终是按钮,按钮后面的事情客户就统统不管了。
要用程序来解决上面提出的问题,一种自然的方案就是来模拟上述解决思路。
在命令模式中,会定义一个命令的接口,用来约束所有的命令对象,然后提供具体的命令实现,每个命令实现对象是对客户端某个请求的封装,对应于机箱上的按钮,一个机箱上可以有很多按钮,也就相当于会有多个具体的命令实现对象。
在命令模式中,命令对象并不知道如何处理命令,会有相应的接收者对象来真正执行命令。就像电脑的例子,机箱上的按钮并不知道如何处理功能,而是把这个请求转发给主板,由主板来执行真正的功能,这个主板就相当于命令模式的接收者。
在命令模式中,命令对象和接收者对象的关系,并不是与生俱来的,需要有一个装配的过程,命令模式中的Client对象就来实现这样的功能。这就相当于在电脑的例子中,有了机箱上的按钮,也有了主板,还需要有一个连接线把这个按钮连接到主板上才行。
命令模式还会提供一个Invoker对象来持有命令对象,就像电脑的例子,机箱上会有多个按钮,这个机箱就相当于命令模式的Invoker对象。这样一来,命令模式的客户端就可以通过Invoker来触发并要求执行相应的命令了,这也相当于真正的客户是按下机箱上的按钮来操作电脑一样。
2.2 模式结构和说明
命令模式的结构如图2所示:

图2 命令模式结构图
Command:
定义命令的接口,声明执行的方法。
ConcreteCommand:
命令接口实现对象,是“虚”的实现;通常会持有接收者,并调用接收者的功能来完成命令要执行的操作。
Receiver:
接收者,真正执行命令的对象。任何类都可能成为一个接收者,只要它能够实现命令要求实现的相应功能。
Invoker:
要求命令对象执行请求,通常会持有命令对象,可以持有很多的命令对象。这个是客户端真正触发命令并要求命令执行相应操作的地方,也就是说相当于使用命令对象的入口。
Client:
创建具体的命令对象,并且设置命令对象的接收者。注意这个不是我们常规意义上的客户端,而是在组装命令对象和接收者,或许,把这个Client称为装配者会更好理解,因为真正使用命令的客户端是从Invoker来触发执行。
2.3 命令模式示例代码
(1)先来看看命令接口的定义,示例代码如下:
/** * 命令接口,声明执行的操作 */ public interface Command { /** * 执行命令对应的操作 */ public void execute(); }
(2)再来看看具体的命令实现对象,示例代码如下:
/** * 具体的命令实现对象 */ public class ConcreteCommand implements Command { /** * 持有相应的接收者对象 */ private Receiver receiver = null; /** * 示意,命令对象可以有自己的状态 */ private String state; /** * 构造方法,传入相应的接收者对象 * @param receiver 相应的接收者对象 */ public ConcreteCommand(Receiver receiver){ this.receiver = receiver; } public void execute() { //通常会转调接收者对象的相应方法,让接收者来真正执行功能 receiver.action(); } }
(3)再来看看接收者对象的实现示意,示例代码如下:
/** * 调用者 */ public class Invoker { /** * 持有命令对象 */ private Command command = null; /** * 设置调用者持有的命令对象 * @param command 命令对象 */ public void setCommand(Command command) { this.command = command; } /** * 示意方法,要求命令执行请求 */ public void runCommand() { //调用命令对象的执行方法 command.execute(); } }
(5)再来看看Client的实现,注意这个不是我们通常意义上的测试客户端,主要功能是要创建命令对象并设定它的接收者,因此这里并没有调用执行的代码,示例代码如下:
public class Client { /** * 示意,负责创建命令对象,并设定它的接收者 */ public void assemble(){ //创建接收者 Receiver receiver = new Receiver(); //创建命令对象,设定它的接收者 Command command = new ConcreteCommand(receiver); //创建Invoker,把命令对象设置进去 Invoker invoker = new Invoker(); invoker.setCommand(command); } }
2.4 使用命令模式来实现示例
要使用命令模式来实现示例,需要先把命令模式中所涉及的各个部分,在实际的示例中对应出来,然后才能按照命令模式的结构来设计和实现程序。根据前面描述的解决思路,大致对应如下:
•机箱上的按钮就相当于是命令对象
•机箱相当于是Invoker
•主板相当于接收者对象
•命令对象持有一个接收者对象,就相当于是给机箱的按钮连上了一根连接线
•当机箱上的按钮被按下的时候,机箱就把这个命令通过连接线发送出去。
主板类才是真正实现开机功能的地方,是真正执行命令的地方,也就是“接收者”。命令的实现对象,其实是个“虚”的实现,就如同那根连接线,它哪知道如何实现啊,还不就是把命令传递给连接线连到的主板。
使用命令模式来实现示例的结构如图3所示:

图3 使用命令模式来实现示例的结构示意图
还是来看看示例代码,会比较清楚。
(1)定义主板
根据前面的描述,我们会发现,真正执行客户命令或请求的是主板,也只有主板才知道如何去实现客户的命令,因此先来抽象主板,把它用对象描述出来。
先来定义主板的接口,最起码主板会有一个能开机的方法,示例代码如下:
/** * 主板的接口 */ public interface MainBoardApi { /** * 主板具有能开机的功能 */ public void open(); }
定义了接口,那就接着定义实现类吧,定义两个主板的实现类,一个是技嘉主板,一个是微星主板,现在的实现是一样的,但是不同的主板对同一个命令的操作可以是不同的,这点大家要注意。由于两个实现基本一样,就示例一个,示例代码如下:
/** * 技嘉主板类,开机命令的真正实现者,在Command模式中充当Receiver */ public class GigaMainBoard implements MainBoardApi{ /** * 真正的开机命令的实现 */ public void open(){ System.out.println("技嘉主板现在正在开机,请等候"); System.out.println("接通电源......"); System.out.println("设备检查......"); System.out.println("装载系统......"); System.out.println("机器正常运转起来......"); System.out.println("机器已经正常打开,请操作"); } }
微星主板的实现和这个完全一样,只是把技嘉改名成微星了。
(2)定义命令接口和命令的实现
对于客户来说,开机就是按下按钮,别的什么都不想做。把用户的这个动作抽象一下,就相当于客户发出了一个命令或者请求,其它的客户就不关心了。为描述客户的命令,现定义出一个命令的接口,里面只有一个方法,那就是执行,示例代码如下:
/** * 命令接口,声明执行的操作 */ public interface Command { /** * 执行命令对应的操作 */ public void execute(); }
有了命令的接口,再来定义一个具体的实现,其实就是模拟现实中机箱上按钮的功能,因为我们按下的是按钮,但是按钮本身是不知道如何启动电脑的,它需要把这个命令转给主板,让主板去真正执行开机功能。示例代码如下:
/** * 开机命令的实现,实现Command接口, * 持有开机命令的真正实现,通过调用接收者的方法来实现命令 */ public class OpenCommand implements Command{ /** * 持有真正实现命令的接收者——主板对象 */ private MainBoardApi mainBoard = null; /** * 构造方法,传入主板对象 * @param mainBoard 主板对象 */ public OpenCommand(MainBoardApi mainBoard) { this.mainBoard = mainBoard; } public void execute() { //对于命令对象,根本不知道如何开机,会转调主板对象 //让主板去完成开机的功能 this.mainBoard.open(); } }
由于客户不想直接和主板打交道,而且客户根本不知道具体的主板是什么,客户只是希望按下启动按钮,电脑就正常启动了,就这么简单。就算换了主板,客户还是一样的按下启动按钮就可以了。
换句话说就是:客户想要和主板完全解耦,怎么办呢?
这就需要在客户和主板之间建立一个中间对象了,客户发出的命令传递给这个中间对象,然后由这个中间对象去找真正的执行者——主板,来完成工作。
很显然,这个中间对象就是上面的命令实现对象,请注意:这个实现其实是个虚的实现,真正的实现是主板完成的,在这个虚的实现里面,是通过转调主板的功能来实现的,主板对象实例,是从外面传进来的。
(3)提供机箱
客户需要操作按钮,按钮是放置在机箱之上的,所以需要把机箱也定义出来,示例代码如下:
/** * 机箱对象,本身有按钮,持有按钮对应的命令对象 */ public class Box { /** * 开机命令对象 */ private Command openCommand; /** * 设置开机命令对象 * @param command 开机命令对象 */ public void setOpenCommand(Command command){ this.openCommand = command; } /** * 提供给客户使用,接收并响应用户请求,相当于按钮被按下触发的方法 */ public void openButtonPressed(){ //按下按钮,执行命令 openCommand.execute(); } }
(4)客户使用按钮
抽象好了机箱和主板,命令对象也准备好了,客户想要使用按钮来完成开机的功能,在使用之前,客户的第一件事情就应该是把按钮和主板组装起来,形成一个完整的机器。
在实际生活中,是由装机工程师来完成这部分工作,这里为了测试简单,直接写在客户端开头了。机器组装好过后,客户应该把与主板连接好的按钮对象放置到机箱上,等待客户随时操作。把这个过程也用代码描述出来,示例代码如下:
public class Client { public static void main(String[] args) { //1:把命令和真正的实现组合起来,相当于在组装机器, //把机箱上按钮的连接线插接到主板上。 MainBoardApi mainBoard = new GigaMainBoard(); OpenCommand openCommand = new OpenCommand(mainBoard); //2:为机箱上的按钮设置对应的命令,让按钮知道该干什么 Box box = new Box(); box.setOpenCommand(openCommand); //3:然后模拟按下机箱上的按钮 box.openButtonPressed(); } }
运行一下,看看效果,输出如下:
1.技嘉主板现在正在开机,请等候 2.接通电源...... 3.设备检查...... 4.装载系统...... 5.机器正常运转起来...... 6.机器已经正常打开,请操作 技嘉主板现在正在开机,请等候 接通电源...... 设备检查...... 装载系统...... 机器正常运转起来...... 机器已经正常打开,请操作
你可以给命令对象组装不同的主板实现类,然后再次测试,看看效果。
事实上,你会发现,如果对象结构已经组装好了过后,对于真正的客户端,也就是真实的用户而言,任务就是面对机箱,按下机箱上的按钮,就可以执行开机的命令了,实际生活中也是这样的。
(5)小结
如同前面的示例,把客户的开机请求封装成为一个OpenCommand对象,客户的开机操作就变成了执行OpenCommand对象的方法了?如果还有其它的命令对象,比如让机器重启的ResetCommand对象;那么客户按下按钮的动作,就可以用这不同的命令对象去匹配,也就是对客户进行参数化。
用大白话描述就是:客户按下一个按钮,到底是开机还是重启,那要看参数化配置的是哪一个具体的按钮对象,如果参数化的是开机的命令对象,那就执行开机的功能,如果参数化的是重启的命令对象,那就执行重启的功能。虽然按下的是同一个按钮,但是请求是不同的,对应执行的功能也就不同了。
在模式讲解的时候会给大家一个参数化配置的示例,这里就不多讲了。至于对请求排队或记录请求日志,以及支持可撤销的操作等功能,也放到模式讲解里面。
未完待续......
发表评论
-
对于单例模式的一点想法
2011-03-04 11:12 946单例模式很普遍,对于S ... -
研磨设计模式之抽象工厂模式-1
2010-10-28 13:46 1028抽象工厂模式(Abstract F ... -
研磨设计模式之工厂方法模式-5
2010-09-13 14:33 9873.3 平行的类层次结构 ... -
研磨设计模式之工厂方法模式-4
2010-09-13 14:17 755... -
研磨设计模式之工厂方法模式-3
2010-09-10 17:28 9033 模式讲解 3.1 认识工厂方法模式 (1)模式的功能 ... -
研磨设计模式之工厂方法模式-2
2010-09-08 10:30 11702 解决方案 2.1 工厂方法模式来解决 ... -
研磨设计模式之工厂方法模式-1(来自chjavach)
2010-09-08 10:20 1127做Java一晃就十年了,最 ... -
设计模式学习笔记(十二)—Builder建造者模式
2008-11-13 10:25 999Builder模式定义:将一个复杂对象的构建与它的表示分离, ... -
设计模式学习笔记(十一)—Prototype原型模式
2008-11-13 10:12 977Prototype模式的意图是: ... -
设计模式学习笔记(七)—Observer观察者模式
2008-11-13 09:47 966《设计模式》一书对Observer是这样描述的:定义对象间的一 ... -
设计模式学习笔记(六)—Decorator装饰模式
2008-11-12 17:04 919《设计模式》一书对Decorator是这样描述的: 动态地给一 ... -
设计模式学习笔记(五)—Abstract Factory抽象工厂模式
2008-11-12 16:47 940GOF《设计模式》一书对Abstract Factory模式是 ... -
设计模式学习笔记(四)—Bridge桥接模式
2008-11-12 16:40 960《设计模式》一书对Bridge是这样描述的: 将抽象与其实现解 ... -
设计模式学习笔记(三)—-Strategy策略模式
2008-11-12 16:17 1179GOF《设计模式》一书对Strategy模式是这样描述的: ... -
设计模式学习笔记(二)—-Adapter适配器模式
2008-11-12 15:50 1028GOF《设计模式》一书对Adapter模式是这样描述的: ... -
设计模式学习笔记(一)--Facade外观模式
2008-11-12 15:48 964GOF《设计模式》一书对Facade模式是这样描述的: ... -
设计模式学习笔记(十)—Factory Method模式
2008-11-12 15:25 1009《设计模式》一书对Factory Method模式是这样描述的 ... -
设计模式学习笔记(九)—Singleton模式
2008-11-12 15:22 913《设计模式》一书对Singleton模式是这样描述的:保证一个 ... -
设计模式学习笔记(八)—Template Method模式
2008-11-12 15:03 1106factory模式(包括简单工厂和抽象工厂),Strategy ...
相关推荐
一、项目简介 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷 二、技术实现 jdk版本:1.8 及以上 ide工具:IDEA或者eclipse 数据库: mysql5.5及以上 后端:spring+springboot+mybatis+maven+mysql 前端: vue , css,js , elementui 三、系统功能 1、系统角色主要包括:管理员、用户 2、系统功能 前台功能包括: 用户登录 车位展示 系统推荐车位 立即预约 公告展示 个人中心 车位预定 违规 余额充值 后台功能: 首页,个人中心,修改密码,个人信息 用户管理 管理员管理 车辆管理 车位管理 车位预定管理,统计报表 公告管理 违规管理 公告类型管理 车位类型管理 车辆类型管理 违规类型管理 轮播图管理 详见 https://flypeppa.blog.csdn.net/article/details/146122666
项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql 部署环境:maven 数据库工具:navica 更多毕业设计https://cv2022.blog.csdn.net/article/details/124463185
内容为Python程序设计的思维导图,适用于新手小白进行浏览,理清思路
2024-Stable Diffusion全套资料(软件+关键词+模型).rar
mmexport1741417035005.png
COMSOL三维锂离子电池全耦合电化学热应力模型:模拟充放电过程中的多物理场耦合效应及电芯内应力应变情况,COMSOL锂离子电池热应力全耦合模型,comsol三维锂离子电池电化学热应力全耦合模型锂离子电池耦合COMSOL固体力学模块和固体传热模块,模型仿真模拟电池在充放电过程中由于锂插层,热膨胀以及外部约束所导致的电极的应力应变情况结果有电芯中集流体,电极,隔膜的应力应变以及压力情况等,电化学-力单向耦合和双向耦合 ,关键词: 1. COMSOL三维锂离子电池模型; 2. 电化学热应力全耦合模型; 3. 锂离子电池; 4. 固体力学模块; 5. 固体传热模块; 6. 应力应变情况; 7. 电芯中集流体; 8. 电极; 9. 隔膜; 10. 电化学-力单向/双向耦合。,COMSOL锂离子电池全耦合热应力仿真模型
基于传递矩阵法的一维层状声子晶体振动传输特性及其优化设计与应用,声子晶体传递矩阵法解析及应用,Matlab 一维层状声子晶体振动传输特性 传递矩阵法在声子晶体的设计和应用中具有重要作用。 通过调整声子晶体的材料、周期和晶格常数等参数,可以设计出具有特定带隙结构的声子晶体,用于滤波、减震、降噪等应用。 例如,通过调整声子晶体的周期数和晶格常数,可以改变带隙的位置和宽度,从而实现特定的频率范围内的噪声控制。 此外,传递矩阵法还可以用于分析和优化声子晶体的透射谱,为声学器件的设计提供理论依据。 ,Matlab; 一维层状声子晶体; 振动传输特性; 传递矩阵法; 材料调整; 周期和晶格常数; 带隙结构; 滤波; 减震; 降噪; 透射谱分析; 声学器件设计,Matlab模拟声子晶体振动传输特性及优化设计研究
头部姿态估计(HeadPose Estimation)-Android源码
永磁同步电机FOC、MPC与高频注入Simulink模型及基于MBD的代码生成工具,适用于Ti f28335与dspace/ccs平台开发,含电机控制开发文档,永磁同步电机控制技术:FOC、MPC与高频注入Simulink模型开发及应用指南,提供永磁同步电机FOC,MPC,高频注入simulink模型。 提供基于模型开发(MBD)代码生成模型,可结合Ti f28335进行电机模型快速开发,可适用dspace平台或者ccs平台。 提供电机控制开发编码器,转子位置定向,pid调试相关文档。 ,永磁同步电机; FOC控制; MPC控制; 高频注入; Simulink模型; 模型开发(MBD); Ti f28335; 电机模型开发; dspace平台; ccs平台; 编码器; 转子位置定向; pid调试。,永磁同步电机MPC-FOC控制与代码生成模型
light of warehouse.zip
内容概要:文章深入讨论了工业乙醇发酵的基本原理及工艺流程,特别是在温度和气体排放(如CO2及其他有害气体)影响下的发酵效果分析。文章介绍了乙醇发酵的重要环节,如糖分解、代谢路径、代谢调控以及各阶段的操作流程,重点展示了如何通过Matlab建模和仿真实验来探索这两个关键环境因素对发酵过程的具体影响。通过动态模型仿真分析,得出合适的温度范围以及适时排除CO2能显著提升发酵产乙醇的效果与效率,从而提出了基于仿真的优化发酵生产工艺的新方法。 适用人群:从事生物工程相关领域研究的科学家、工程师及相关专业师生。 使用场景及目标:适用于实验室环境、学术交流会议及实际生产指导中,以提升研究人员对该领域内复杂现象的理解能力和技术水平为目标。 其他说明:附录中有详细的数学公式表达和程序代码可供下载执行,便于有兴趣的研究团队重复实验或者继续扩展研究工作。
本资源包专为解决 Tomcat 启动时提示「CATALINA_HOME 环境变量未正确配置」问题而整理,包含以下内容: 1. **Apache Tomcat 9.0.69 官方安装包**:已验证兼容性,解压即用。 2. **环境变量配置指南**: - Windows 系统下 `CATALINA_HOME` 和 `JAVA_HOME` 的详细配置步骤。 - 常见错误排查方法(如路径含空格、未生效问题)。 3. **辅助工具脚本**:一键检测环境变量是否生效的批处理文件。 4. **解决方案文档**:图文并茂的 PDF 文档,涵盖从报错分析到成功启动的全流程。 适用场景: - Tomcat 9.x 版本环境配置 - Java Web 开发环境搭建 - 运维部署调试 注意事项: - 资源包路径需为纯英文,避免特殊字符。 - 建议使用 JDK 8 或更高版本。
这是一款仿照京东商城的Java Web项目源码,完美复现了360buy的用户界面和购物流程,非常适合Java初学者和开发者进行学习与实践。通过这份源码,你将深入了解电商平台的架构设计和实现方法。欢迎大家下载体验,提升自己的编程能力!
系统选用B/S模式,后端应用springboot框架,前端应用vue框架, MySQL为后台数据库。 本系统基于java设计的各项功能,数据库服务器端采用了Mysql作为后台数据库,使Web与数据库紧密联系起来。 在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。
这是一款专为大学生打造的求职就业网JavaWeb毕业设计源码,功能齐全,界面友好。它提供简历投递、职位搜索、在线交流等多种实用功能,能够帮助你顺利进入职场。无论你是想提升技术水平还是寻找灵感,这个源码都是不可多得的资源。快来下载,让你的求职之路更加顺畅吧!
useTable(1).ts
实验一: 1、进行CCS6.1软件的安装,仿真器的设置,程序的编译和调试; 2、熟悉CCS软件中的C语言编程; 3、使用按键控制LED跑马灯的开始与停止、闪烁频率; 4、调试Convolution、FFT、FIR、FFT-FIR实验,编制IIR算法并调试,并在CCS软件上给出实验结果。 实验二: 1、利用定时器周期中断或下溢中断和比较器比较值的修改来实现占空比可调的PWM波形; 2、改变PWM占空比控制LED灯的亮暗,按键实现10级LED灯亮暗调整; 3、模拟数字转换,转换过程中LED指示,并在变量窗口显示转换结果; 4、数字模拟转换,产生一个正弦波,转换过程中LED指示,转换完成后在CCS调试窗口显示波形。 实验三: 1、SCI异步串行通信实验; 2、SPI及IIC同步串行通信实验; 3、CAN现场总线串行通信实验; 4、传输过程中LED指示。 实验四: 1、电机转速控制实验。
LINUX系统管理与配置.docx
chromedriver-mac-x64-136.0.7055.0.zip
地级城市驻地,dbf 地级城市驻地,prj 地级城市驻地.sbn 9 地级城市驻地.sbx 地级城市驻地.shp 地级城市驻地.shx 9 国界线.dbf 国界线.prj 国界线.sbne 国界线.sbx 国界线.shp 国界线.shx )经纬网.dbf ]经纬网.prj 经纬网.sbn 经纬网.sbx 经纬网.shp 经纬网.shx 全国县级统计数据.dbf 全国县级统计数据,prj 全国县级统计数据.sbr 全国县级统计数据.sbx 全国县级统计数据.shp 全国县级统计数据.shx )省会城市.dbf 省会城市,prj 省会城市.sbn 省会城市.sbx 省会城市.shp 省会城市.shx 省级行政区.dbf 省级行政区,pn 省级行政区.sbn 省级行政区,sbx 9 省级行政区.shp 9 6 省级行政区,shx 县城驻地.dbf 县城驻地,prj 擷垃岑械鰣媛城驻地.sbr 藶勇瑁鴎隐城驻地.sbx 县蓿玨蒴城驻地.shp 苽6城驻地,shx 线状省界.dbf 线状省界,prj 1线状首界,sbn 线状省界.sbx 线状首界.shp 线状省界,shx 线状县界,dbf □]