`

分治算法

阅读更多
一、分治算法

  分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。

  分治法解题的一般步骤:

  (1)分解,将要解决的问题划分成若干规模较小的同类问题;

  (2)求解,当子问题划分得足够小时,用较简单的方法解决;

  (3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

  当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。这就是分治策略的基本思想。下面通过实例加以说明。

  【例1】 [找出伪币] 给你一个装有1 6个硬币的袋子。1 6个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。你的任务是找出这个伪造的硬币。为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。比较硬币1与硬币2的重量。假如硬币1比硬币2轻,则硬币1是伪造的;假如硬币2比硬币1轻,则硬币2是伪造的。这样就完成了任务。假如两硬币重量相等,则比较硬币3和硬币4。同样,假如有一个硬币轻一些,则寻找伪币的任务完成。假如两硬币重量相等,则继续比较硬币5和硬币6。按照这种方式,可以最多通过8次比较来判断伪币的存在并找出这一伪币。

  另外一种方法就是利用分而治之方法。假如把1 6硬币的例子看成一个大的问题。第一步,把这一问题分成两个小问题。随机选择8个硬币作为第一组称为A组,剩下的8个硬币作为第二组称为B组。这样,就把1 6个硬币的问题分成两个8硬币的问题来解决。第二步,判断A和B组中是否有伪币。可以利用仪器来比较A组硬币和B组硬币的重量。假如两组硬币重量相等,则可以判断伪币不存在。假如两组硬币重量不相等,则存在伪币,并且可以判断它位于较轻的那一组硬币中。最后,在第三步中,用第二步的结果得出原先1 6个硬币问题的答案。若仅仅判断硬币是否存在,则第三步非常简单。无论A组还是B组中有伪币,都可以推断这1 6个硬币中存在伪币。因此,仅仅通过一次重量的比较,就可以判断伪币是否存在。

  现在假设需要识别出这一伪币。把两个或三个硬币的情况作为不可再分的小问题。注意如果只有一个硬币,那么不能判断出它是否就是伪币。在一个小问题中,通过将一个硬币分别与其他两个硬币比较,最多比较两次就可以找到伪币。这样,1 6硬币的问题就被分为两个8硬币(A组和B组)的问题。通过比较这两组硬币的重量,可以判断伪币是否存在。如果没有伪币,则算法终止。否则,继续划分这两组硬币来寻找伪币。假设B是轻的那一组,因此再把它分成两组,每组有4个硬币。称其中一组为B1,另一组为B2。比较这两组,肯定有一组轻一些。如果B1轻,则伪币在B1中,再将B1又分成两组,每组有两个硬币,称其中一组为B1a,另一组为B1b。比较这两组,可以得到一个较轻的组。由于这个组只有两个硬币,因此不必再细分。比较组中两个硬币的重量,可以立即知道哪一个硬币轻一些。较轻的硬币就是所要找的伪币。

  【例2】在n个元素中找出最大元素和最小元素。我们可以把这n个元素放在一个数组中,用直接比较法求出。算法如下:

  void maxmin1(int A[],int n,int *max,int *min)

  { int i;

  *min=*max=A[0];

  for(i=2;i < n;i++)

  { if(A > *max) *max= A;

  if(A < *min) *min= A;

  }

  }

  上面这个算法需比较2(n-1)次。能否找到更好的算法呢?我们用分治策略来讨论。

  把n个元素分成两组:

  A1={A[1],...,A[int(n/2)]}和A2={A[INT(N/2)+1],...,A[N]}

  分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。直至子集中元素至多两个元素为止。

  例如有下面一组元素:-13,13,9,-5,7,23,0,15。用分治策略比较的过程如下:

  图中每个方框中,左边是最小值,右边是最大值。从图中看出,用这种方法一共比较了10次,比直接比较法的14次减少4次,即约减少了1/3。算法如下:

  void maxmin2(int A[],int i,int j,int *max,int *min)

  /*A存放输入的数据,i,j存放数据的范围,初值为0,n-1,*max,int *min 存放最大和最小值*/

  { int mid,max1,max2,min1,min2;

  if (j==i) {最大和最小值为同一个数;return;}

  if (j-1==i) {将两个数直接比较,求得最大会最小值;return;}

  mid=(i+j)/2;

  求i~mid之间的最大最小值分别为max1,min1;

  求mid+1~j之间的最大最小值分别为max2,min2;

  比较max1和max2,大的就是最大值;

  比较min1和min2,小的就是最小值;

  }

  利用分治策略求解时,所需时间取决于分解后子问题的个数、子问题的规模大小等因素,而二分法,由于其划分的简单和均匀的特点,是经常采用的一种有效的方法,例如二分法检索。运用分治策略解决的问题一般来说具有以下特点:

  1、原问题可以分解为多个子问题,这些子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似。

  2、原问题在分解过程中,递归地求解子问题,由于递归都必须有一个终止条件,因此,当分解后的子问题规模足够小时,应能够直接求解。

  3、在求解并得到各个子问题的解后,应能够采用某种方式、方法合并或构造出原问题的解。

  不难发现,在分治策略中,由于子问题与原问题在结构和解法是的相似性,用分治方法解决的问题,大都采用了递归的形式。在各种排序方法中,如归并排序、堆排序、快速排序等,都存在有分治的思想。
分享到:
评论

相关推荐

    分治算法的实现

    **分治算法详解** 分治算法是计算机科学中一种重要的问题解决策略,它将一个大问题分解成若干个规模较小的相同或相似的子问题,然后递归地解决这些子问题,最后将子问题的解合并得到原问题的解。这种方法能够有效地...

    动态规划,分治算法,概率算法,模拟退火算法,搜索算法,贪婪算法,网上matlab,遗传算法,组合算法

    本篇文章将深入探讨标题和描述中提到的一些核心算法,包括动态规划、分治算法、概率算法、模拟退火算法、搜索算法、贪婪算法、在线MATLAB应用、遗传算法以及组合算法。 1. **动态规划**:动态规划是一种解决具有...

    分治算法实验报告

    【分治算法】是一种重要的计算机科学中的算法设计策略,它将复杂的问题分解成若干个规模较小的相同问题,再将这些小问题的解合并得到原问题的解。这个过程可以递归地应用到子问题上,直至子问题足够简单可以直接求解...

    算法实习:分治算法求n个数的数组中找出第二个最大元素

    ### 分治算法求解数组中第二大的元素 #### 背景介绍 在计算机科学领域,寻找数组中的最大或次大元素是常见的问题之一。这类问题不仅有助于理解数据结构的基本概念,也是评估算法效率和复杂度的良好案例。本文将探讨...

    计算机算法-分治算法

    分治算法是计算机科学中的一个核心概念,它是一种解决问题的策略,通过将复杂问题分解为较小的、相同或相似的子问题来解决。这个过程通常涉及三个主要步骤:分解、解决和合并。分治法充分利用了问题的结构特性,使得...

    Java基于分治算法实现的棋盘覆盖问题示例

    Java基于分治算法实现的棋盘覆盖问题示例 本文主要介绍了Java基于分治算法实现的棋盘覆盖问题,简单描述了棋盘覆盖问题,并结合具体实例形式分析了Java基于分治算法实现棋盘覆盖问题的相关操作技巧。 知识点一:...

    从键盘输入一组整数,通过分治算法求第二大的数

    ### 分治算法求第二大的数 #### 背景与目的 在计算机科学领域,分治算法是一种重要的问题解决策略,被广泛应用于多种算法设计之中。分治算法的基本思想是将一个复杂的问题分解成两个或更多的相同或相似的子问题,...

    数学建模十大算法之分治算法

    ### 数学建模十大算法之分治算法:深入解析与应用 #### 分治算法概览 在数学建模与计算机科学领域,分治算法(Divide and Conquer)是一种核心的解决问题策略,广泛应用于各种复杂问题的求解过程中。其基本思想是...

    信息学奥赛一本通-教程PPT课件(第五版)算法部分 第七章 分治算法.pdf

    分治算法是计算机科学中的一种重要算法思想,其核心是将一个难以直接解决的大问题分解成一些规模较小的相同问题,递归地解决这些子问题,然后再将子问题的解合并以得到原来问题的解。本部分介绍的信息学奥赛教程PPT...

    分治算法详解

    分治算法是一种重要的算法设计思想,其核心在于将一个难以直接解决的大问题划分成若干个小问题,递归地解决这些小问题,最后再将小问题的解合并以解决原来的大问题。在本课程件中,将从多个方面对分治算法进行详细...

    贪心算法、分治算法和动态规划的区别 贪心算法和动态规划.pdf

    贪心算法、分治算法和动态规划的区别 贪心算法、分治算法和动态规划是三种常用的算法设计策略,每种算法都有其特点和应用场景。下面我们将对这三种算法进行详细的比较和分析。 分治算法 分治算法是一种将原问题...

    低买高卖分治算法

    - 分治算法是一种解决复杂问题的有效方法,它将大问题分解为若干个规模较小的相同或相似的子问题,递归地解决子问题,最后将子问题的解组合得到原问题的解。 - 在低买高卖问题中,分治算法的应用可能并不直观,但...

    分治算法在循环赛赛程分配中的应用

    分治算法是一种有效的算法设计策略,其核心思想是将一个难以直接解决的大问题分解成一系列规模较小的相同问题,递归地解决这些子问题,然后将子问题的解合并以得到原问题的解。分治算法广泛应用于计算机科学和信息...

    邮局最佳选址问题分治算法python实现

    在这个场景中,我们采用分治算法来解决。分治算法是一种将复杂问题分解为多个较小规模的子问题,然后逐个解决的策略。在邮局选址问题中,可能的目标是找到一个位置,使得所有客户的平均距离最小。 首先,我们需要...

    基础算法 第7章 分治算法(C++版)-2021.02.04.pdf

    分治算法是一种解决复杂问题的策略,其核心思想是将大问题划分成若干个小问题,递归地解决这些小问题,然后合并这些小问题的解以得到原来大问题的解。分治算法的基本步骤通常包括分解、解决、合并三个阶段。 在描述...

    算法——分治算法原理

    **分治算法**是一种在计算机科学中广泛应用的解决问题的策略,尤其在算法设计领域具有重要地位。它的核心理念是将复杂的问题分解成多个相似的、更小规模的子问题,然后对子问题进行求解,最后将子问题的解合并以获得...

    分治算法(最近点对问题的C++实现)

    在计算机科学中,分治算法是一种重要的解决问题的策略,它将一个大问题分解为若干个相同或相似的小问题,然后分别解决这些小问题,最后再将这些小问题的解组合成原问题的解。这种算法通常应用于数据结构、排序、搜索...

    分治算法-求一个数组中的最大值和最小值

    ### 分治算法在求解最大值与最小值问题中的应用 #### 一、分治算法原理及背景 分治算法是一种高效的问题解决策略,它通过将一个复杂的问题分解成若干个相同或相似的小问题来逐步求解。这些小问题彼此独立且与原...

    棋盘覆盖算法(分治算法)

    ### 棋盘覆盖算法(分治算法) #### 背景与定义 在计算机科学领域,特别是算法设计中,“棋盘覆盖”问题是一个经典的题目,它涉及到如何使用特定形状的多米诺骨牌(通常为 L 形)来覆盖一个有缺陷的棋盘。这里所谓的...

Global site tag (gtag.js) - Google Analytics