- 浏览: 261962 次
- 性别:
- 来自: 多伦多
文章分类
- 全部博客 (127)
- Java 基础 (46)
- Java EE (3)
- Clouds (1)
- Spring 编程 (7)
- Spring Batch 编程 (1)
- Quartz 编程 (9)
- Seam 编程 (4)
- Hibernate 编程 (1)
- JSF 编程 (3)
- jQuery 编程 (3)
- Interview Question 汇总 (3)
- 日常应用 (3)
- Maven 编程 (2)
- WebService 编程 (10)
- Scala 编程 (5)
- Coherence 编程 (8)
- OO 编程 (1)
- Java 线程 (6)
- DB 编程 (2)
- WebService 安全 (4)
- Oracle Fusion 编程 (2)
- JavsScript/Ajax 编程 (1)
最新评论
-
chainal:
赞,说的很好
Scala 有趣的Trait -
wuliupo:
RRRR-MM-DD HH24:MI:SS
如何让Oracle SQL Developer显示的包含在日期字段中的时间 -
pengain:
...
使用Spring Roo ,感受ROR式的开发 -
zeng1990:
def getPersonInfo() = {
(&quo ...
Java 的继位人? - Scala简介 -
zeng1990:
我使用的是2.9.2版本的!
Java 的继位人? - Scala简介
转自:http://fanlei77.iteye.com/blog/721631
现在的笔试也不知道怎么了,必出多线程方面的题,没办法,这是潮流啊,作为一个“潮人”,当然要紧跟面试潮流啊,学学多线程吧:
JDK 5.0 中的并发改进可以分为三组:
JVM 级别更改。大多数现代处理器对并发对某一硬件级别提供支持,通常以 compare-and-swap (CAS)指令形式。CAS 是一种低级别的、细粒度的技术,它允许多个线程更新一个内存位置,同时能够检测其他线程的冲突并进行恢复。它是许多高性能并发算法的基础。在 JDK 5.0 之前,Java 语言中用于协调线程之间的访问的惟一原语是同步,同步是更重量级和粗粒度的。公开 CAS 可以开发高度可伸缩的并发 Java 类。这些更改主要由 JDK 库类使用,而不是由开发人员使用。
低级实用程序类 —— 锁定和原子类。使用 CAS 作为并发原语,ReentrantLock 类提供与 synchronized 原语相同的锁定和内存语义,然而这样可以更好地控制锁定(如计时的锁定等待、锁定轮询和可中断的锁定等待)和提供更好的可伸缩性(竞争时的高性能)。大多数开发人员将不再直接使用 ReentrantLock 类,而是使用在 ReentrantLock 类上构建的高级类。
高级实用程序类。这些类实现并发构建块,每个计算机科学文本中都会讲述这些类 —— 信号、互斥、闩锁、屏障、交换程序、线程池和线程安全集合类等。大部分开发人员都可以在应用程序中用这些类,来替换许多(如果不是全部)同步、wait() 和 notify() 的使用,从而提高性能、可读性和正确性。
所有重要的操作系统都支持进程的概念 —— 独立运行的程序,在某种程度上相互隔离。
线程有时称为 轻量级进程。与进程一样,它们拥有通过程序运行的独立的并发路径,并且每个线程都有自己的程序计数器,称为堆栈和本地变量。然而,线程存在于进程中,它们与同一进程内的其他线程共享内存、文件句柄以及每进程状态。
许多 J2SE 和 J2EE 工具可以创建线程,如 RMI、Servlet、Enterprise JavaBeans 组件和 Swing GUI 工具包。
下列 servlet 看起来像无害的留言板 servlet,它保存每个来访者的姓名。然而,该 servlet 不是线程安全的,而这个 servlet 应该是线程安全的。问题在于它使用 HashSet 存储来访者的姓名,HashSet 不是线程安全的类。
当我们说这个 servlet 不是线程安全的时,是说它所造成的破坏不仅仅是丢失留言板输入。在最坏的情况下,留言板数据结构都可能被破坏并且无法恢复。
Java代码
public class UnsafeGuestbookServlet extends HttpServlet { private Set visitorSet = new HashSet(); protected void doGet(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse) throws ServletException, IOException { String visitorName = httpServletRequest.getParameter("NAME"); if (visitorName != null) visitorSet.add(visitorName); } }
通过将 visitorSet 的定义更改为下列代码,可以使该类变为线程安全的:
Java代码
private Set visitorSet = Collections.synchronizedSet(new HashSet());
如上所示的例子显示线程的内置支持是一把双刃剑 —— 虽然它使构建多线程应用程序变得很容易,但它同时要求开发人员更加注意并发问题,甚至在使用留言板 servlet 这样普通的东西时也是如此。
JDK 1.2 中引入的 Collection 框架是一种表示对象集合的高度灵活的框架,它使用基本接口 List、Set 和 Map。通过 JDK 提供每个集合的多次实现(HashMap、Hashtable、TreeMap、WeakHashMap、HashSet、TreeSet、Vector、ArrayList、LinkedList 等等)。其中一些集合已经是线程安全的(Hashtable 和 Vector),通过同步的封装工厂(Collections.synchronizedMap()、synchronizedList() 和 synchronizedSet()),其余的集合均可表现为线程安全的。
java.util.concurrent 包添加了多个新的线程安全集合类(ConcurrentHashMap、CopyOnWriteArrayList 和 CopyOnWriteArraySet)。这些类的目的是提供高性能、高度可伸缩性、线程安全的基本集合类型版本。
java.util 中的线程集合仍有一些缺点。例如,在迭代锁定时,通常需要将该锁定保留在集合中,否则,会有抛出 ConcurrentModificationException 的危险。(这个特性有时称为条件线程安全)此外,如果从多个线程频繁地访问集合,则常常不能很好地执行这些类。java.util.concurrent 中的新集合类允许通过在语义中的少量更改来获得更高的并发。
JDK 5.0 还提供了两个新集合接口 —— Queue 和 BlockingQueue。Queue 接口与 List 类似,但它只允许从后面插入,从前面删除。通过消除 List 的随机访问要求,可以创建比现有 ArrayList 和 LinkedList 实现性能更好的 Queue 实现。因为 List 的许多应用程序实际上不需要随机访问,所以Queue 通常可以替代 List,来获得更好的性能。
可以用两种方法创建线程安全支持数据的 List —— Vector 或封装 ArrayList 和 Collections.synchronizedList()。java.util.concurrent 包添加了名称繁琐的 CopyOnWriteArrayList。为什么我们想要新的线程安全的 List 类?为什么 Vector 还不够?
最简单的答案是与迭代和并发修改之间的交互有关。使用 Vector 或使用同步的 List 封装器,返回的迭代器是 fail-fast 的,这意味着如果在迭代过程中任何其他线程修改 List,迭代可能失败。
Vector 的非常普遍的应用程序是存储通过组件注册的监听器的列表。当发生适合的事件时,该组件将在监听器的列表中迭代,调用每个监听器。为了防止 ConcurrentModificationException,迭代线程必须复制列表或锁定列表,以便进行整体迭代,而这两种情况都需要大量的性能成本。
CopyOnWriteArrayList 类通过每次添加或删除元素时创建支持数组的新副本,避免了这个问题,但是进行中的迭代保持对创建迭代器时的当前副本进行操作。虽然复制也会有一些成本,但是在许多情况下,迭代要比修改多得多,在这些情况下,写入时复制要比其他备用方法具有更好的性能和并发性。
如果应用程序需要 Set 语义,而不是 List,那么还有一个 Set 版本 —— CopyOnWriteArraySet。
正如已经存在线程安全的 List 的实现,您可以用多种方法创建线程安全的、基于 hash 的 Map —— Hashtable,并使用 Collections.synchronizedMap() 封装 HashMap。JDK 5.0 添加了 ConcurrentHashMap 实现,该实现提供了相同的基本线程安全的 Map 功能,但它大大提高了并发性。
Hashtable 和 synchronizedMap 所采取的获得同步的简单方法(同步 Hashtable 中或者同步的 Map 封装器对象中的每个方法)有两个主要的不足。首先,这种方法对于可伸缩性是一种障碍,因为一次只能有一个线程可以访问 hash 表。同时,这样仍不足以提供真正的线程安全性,许多公用的混合操作仍然需要额外的同步。虽然诸如 get() 和 put() 之类的简单操作可以在不需要额外同步的情况下安全地完成,但还是有一些公用的操作序列,例如迭代或者 put-if-absent(空则放入),需要外部的同步,以避免数据争用。
Hashtable 和 Collections.synchronizedMap 通过同步每个方法获得线程安全。这意味着当一个线程执行一个 Map 方法时,无论其他线程要对 Map 进行什么样操作,都不能执行,直到第一个线程结束才可以。
对比来说,ConcurrentHashMap 允许多个读取几乎总是并发执行,读和写操作通常并发执行,多个同时写入经常并发执行。结果是当多个线程需要访问同一 Map 时,可以获得更高的并发性。
在大多数情况下,ConcurrentHashMap 是 Hashtable或 Collections.synchronizedMap(new HashMap()) 的简单替换。然而,其中有一个显著不同,即 ConcurrentHashMap 实例中的同步不锁定映射进行独占使用。实际上,没有办法锁定 ConcurrentHashMap 进行独占使用,它被设计用于进行并发访问。为了使集合不被锁定进行独占使用,还提供了公用的混合操作的其他(原子)方法,如 put-if-absent。ConcurrentHashMap 返回的迭代器是弱一致的,意味着它们将不抛出 ConcurrentModificationException ,将进行“合理操作”来反映迭代过程中其他线程对 Map 的修改。
原始集合框架包含三个接口:List、Map 和 Set。List 描述了元素的有序集合,支持完全随即访问 —— 可以在任何位置添加、提取或删除元素。
LinkedList 类经常用于存储工作元素(等待执行的任务)的列表或队列。然而,List 提供的灵活性比该公用应用程序所需要的多得多,这个应用程序通常在后面插入元素,从前面删除元素。但是要支持完整 List 接口则意味着 LinkedList 对于这项任务不像原来那样有效。Queue 接口比 List 简单得多,仅包含 put() 和 take() 方法,并允许比 LinkedList 更有效的实现。
Queue 接口还允许实现来确定存储元素的顺序。ConcurrentLinkedQueue 类实现先进先出(first-in-first-out,FIFO)队列,而 PriorityQueue 类实现优先级队列(也称为堆),它对于构建调度器非常有用,调度器必须按优先级或预期的执行时间执行任务。
Java代码
interface Queue<E> extends Collection<E> { boolean offer(E x); E poll(); E remove() throws NoSuchElementException; E peek(); E element() throws NoSuchElementException; }
实现 Queue 的类是:
LinkedList 已经进行了改进来实现 Queue。
PriorityQueue 非线程安全的优先级对列(堆)实现,根据自然顺序或比较器返回元素。
ConcurrentLinkedQueue 快速、线程安全的、无阻塞 FIFO 队列。
线程最普遍的一个应用程序是创建一个或多个线程,以执行特定类型的任务。Timer 类创建线程来执行 TimerTask 对象,Swing 创建线程来处理 UI 事件。在这两种情况中,在单独线程中执行的任务都假定是短期的,这些线程是为了处理大量短期任务而存在的。
在其中每种情况中,这些线程一般都有非常简单的结构:
Java代码
while (true) { if (no tasks) wait for a task; execute the task; }
通过例示从 Thread 获得的对象并调用 Thread.start() 方法来创建线程。可以用两种方法创建线程:通过扩展 Thread 和覆盖 run() 方法,或者通过实现 Runnable 接口和使用 Thread(Runnable) 构造函数:
Java代码
class WorkerThread extends Thread { public void run() { /* do work */ } } Thread t = new WorkerThread(); t.start();
或者:
Java代码
Thread t = new Thread(new Runnable() { public void run() { /* do work */ } } t.start();
大多数服务器应用程序(如 Web 服务器、POP 服务器、数据库服务器或文件服务器)代表远程客户机处理请求,这些客户机通常使用 socket 连接到服务器。对于每个请求,通常要进行少量处理(获得该文件的代码块,并将其发送回 socket),但是可能会有大量(且不受限制)的客户机请求服务。
用于构建服务器应用程序的简单化模型会为每个请求创建新的线程。下列代码段实现简单的 Web 服务器,它接受端口 80 的 socket 连接,并创建新的线程来处理请求。不幸的是,该代码不是实现 Web 服务器的好方法,因为在重负载条件下它将失败,停止整台服务器。
Java代码
class UnreliableWebServer { public static void main(String[] args) { ServerSocket socket = new ServerSocket(80); while (true) { final Socket connection = socket.accept(); Runnable r = new Runnable() { public void run() { handleRequest(connection); } }; // Don't do this! new Thread(r).start(); } } }
当服务器被请求吞没时,UnreliableWebServer 类不能很好地处理这种情况。每次有请求时,就会创建新的类。根据操作系统和可用内存,可以创建的线程数是有限的。不幸的是,您通常不知道限制是多少 —— 只有当应用程序因为 OutOfMemoryError 而崩溃时才发现。
如果足够快地在这台服务器上抛出请求的话,最终其中一个线程创建将失败,生成的 Error 会关闭整个应用程序。当一次仅能有效支持很少线程时,没有必要创建上千个线程,无论如何,这样使用资源可能会损害性能。创建线程会使用相当一部分内存,其中包括有两个堆栈(Java 和 C),以及每线程数据结构。如果创建过多线程,其中每个线程都将占用一些 CPU 时间,结果将使用许多内存来支持大量线程,每个线程都运行得很慢。这样就无法很好地使用计算资源。
为任务创建新的线程并不一定不好,但是如果创建任务的频率高,而平均任务持续时间低,我们可以看到每项任务创建一个新的线程将产生性能(如果负载不可预知,还有稳定性)问题。
如果不是每项任务创建一个新的线程,则服务器应用程序必须采取一些方法来限制一次可以处理的请求数。这意味着每次需要启动新的任务时,它不能仅调用下列代码。
new Thread(runnable).start()
管理一大组小任务的标准机制是组合工作队列和线程池。工作队列就是要处理的任务的队列,前面描述的 Queue 类完全适合。线程池是线程的集合,每个线程都提取公用工作队列。当一个工作线程完成任务处理后,它会返回队列,查看是否有其他任务需要处理。如果有,它会转移到下一个任务,并开始处理。
线程池为线程生命周期间接成本问题和资源崩溃问题提供了解决方案。通过对多个任务重新使用线程,创建线程的间接成本将分布到多个任务中。作为一种额外好处,因为请求到达时,线程已经存在,从而可以消除由创建线程引起的延迟。因此,可以立即处理请求,使应用程序更易响应。而且,通过正确调整线程池中的线程数,可以强制超出特定限制的任何请求等待,直到有线程可以处理它,它们等待时所消耗的资源要少于使用额外线程所消耗的资源,这样可以防止资源崩溃。
java.util.concurrent 包中包含灵活的线程池实现,但是更重要的是,它包含用于管理实现 Runnable 的任务的执行的整个框架。该框架称为 Executor 框架。
Executor 接口相当简单。它描述将运行 Runnable 的对象:
Java代码
public interface Executor { void execute(Runnable command); }
任务运行于哪个线程不是由该接口指定的,这取决于使用的 Executor 的实现。它可以运行于后台线程,如 Swing 事件线程,或者运行于线程池,或者调用线程,或者新的线程,它甚至可以运行于其他 JVM!通过同步的 Executor 接口提交任务,从任务执行策略中删除任务提交。Executor 接口独自关注任务提交 —— 这是 Executor 实现的选择,确定执行策略。这使在部署时调整执行策略(队列限制、池大小、优先级排列等等)更加容易,更改的代码最少。
java.util.concurrent 中的大多数 Executor 实现还实现 ExecutorService 接口,这是对 Executor 的扩展,它还管理执行服务的生命周期。这使它们更易于管理,并向生命可能比单独 Executor 的生命更长的应用程序提供服务。
Java代码
public interface ExecutorService extends Executor { void shutdown(); List<Runnable> shutdownNow(); boolean isShutdown(); boolean isTerminated(); boolean awaitTermination(long timeout, TimeUnit unit); // other convenience methods for submitting tasks }
java.util.concurrent 包包含多个 Executor 实现,每个实现都实现不同的执行策略。什么是执行策略?执行策略定义何时在哪个线程中运行任务,执行任务可能消耗的资源级别(线程、内存等等),以及如果执行程序超载该怎么办。
执行程序通常通过工厂方法例示,而不是通过构造函数。Executors 类包含用于构造许多不同类型的 Executor 实现的静态工厂方法:
Executors.newCachedThreadPool() 创建不限制大小的线程池,但是当以前创建的线程可以使用时将重新使用那些线程。如果没有现有线程可用,将创建新的线程并将其添加到池中。使用不到 60 秒的线程将终止并从缓存中删除。
Executors.newFixedThreadPool(int n) 创建线程池,其重新使用在不受限制的队列之外运行的固定线程组。在关闭前,所有线程都会因为执行过程中的失败而终止,如果需要执行后续任务,将会有新的线程来代替这些线程。
Executors.newSingleThreadExecutor() 创建 Executor,其使用在不受限制的队列之外运行的单一工作线程,与 Swing 事件线程非常相似。保证顺序执行任务,在任何给定时间,不会有多个任务处于活动状态。
Java代码
class ReliableWebServer { Executor pool = Executors.newFixedThreadPool(7); public static void main(String[] args) { ServerSocket socket = new ServerSocket(80); while (true) { final Socket connection = socket.accept(); Runnable r = new Runnable() { public void run() { handleRequest(connection); } }; pool.execute(r); } } }
注意,本例与前例之间的区别仅在于 Executor 的创建以及如何提交执行的任务。
Executors 中的 newFixedThreadPool 和 newCachedThreadPool 工厂方法返回的 Executor 是类 ThreadPoolExecutor 的实例,是高度可定制的。
通过使用包含 ThreadFactory 变量的工厂方法或构造函数的版本,可以定义池线程的创建。ThreadFactory 是工厂对象,其构造执行程序要使用的新线程。使用定制的线程工厂,创建的线程可以包含有用的线程名称,并且这些线程是守护线程,属于特定线程组或具有特定优先级。
下面是线程工厂的例子,它创建守护线程,而不是创建用户线程:
Java代码
public class DaemonThreadFactory implements ThreadFactory { public Thread newThread(Runnable r) { Thread thread = new Thread(r); thread.setDaemon(true); return thread; } }
有时,Executor 不能执行任务,因为它已经关闭或者因为 Executor 使用受限制队列存储等待任务,而该队列已满。在这种情况下,需要咨询执行程序的 RejectedExecutionHandler 来确定如何处理任务 —— 抛出异常(默认情况),放弃任务,在调用者的线程中执行任务,或放弃队列中最早的任务以为新任务腾出空间。ThreadPoolExecutor.setRejectedExecutionHandler 可以设置拒绝的执行处理程序。
还可以扩展 ThreadPoolExecutor,并覆盖方法 beforeExecute 和 afterExecute,以添加装置,添加记录,添加计时,重新初始化线程本地变量,或进行其他执行定制。
创建 Executor 时,人们普遍会问的一个问题是“线程池应该有多大?”。当然,答案取决于硬件和将执行的任务类型(它们是受计算限制或是受 IO 的限制?)。
如果线程池太小,资源可能不能被充分利用,在一些任务还在工作队列中等待执行时,可能会有处理器处于闲置状态。
另一方面,如果线程池太大,则将有许多有效线程,因为大量线程或有效任务使用内存,或者因为每项任务要比使用少量线程有更多上下文切换,性能可能会受损。
所以假设为了使处理器得到充分使用,线程池应该有多大?如果知道系统有多少处理器和任务的计算时间和等待时间的近似比率,Amdahl 法则提供很好的近似公式。
用 WT 表示每项任务的平均等待时间,ST 表示每项任务的平均服务时间(计算时间)。则 WT/ST 是每项任务等待所用时间的百分比。对于 N 处理器系统,池中可以近似有 N*(1+WT/ST) 个线程。
好的消息是您不必精确估计 WT/ST。“合适的”池大小的范围相当大;只需要避免“过大”和“过小”的极端情况即可。
Future 接口允许表示已经完成的任务、正在执行过程中的任务或者尚未开始执行的任务。通过 Future 接口,可以尝试取消尚未完成的任务,查询任务已经完成还是取消了,以及提取(或等待)任务的结果值。
FutureTask 类实现了 Future,并包含一些构造函数,允许将 Runnable 或 Callable(会产生结果的 Runnable)和 Future 接口封装。因为 FutureTask 也实现 Runnable,所以可以只将 FutureTask 提供给 Executor。一些提交方法(如 ExecutorService.submit())除了提交任务之外,还将返回 Future 接口。
Future.get() 方法检索任务计算的结果(或如果任务完成,但有异常,则抛出 ExecutionException)。如果任务尚未完成,那么 Future.get() 将被阻塞,直到任务完成;如果任务已经完成,那么它将立即返回结果。
该示例代码与 java.util.concurrent 中的多个类关联,突出显示了 Future 的功能。它实现缓存,使用 Future 描述缓存值,该值可能已经计算,或者可能在其他线程中“正在构造”。
它利用 ConcurrentHashMap 中的原子 putIfAbsent() 方法,确保仅有一个线程试图计算给定关键字的值。如果其他线程随后请求同一关键字的值,它仅能等待(通过 Future.get() 的帮助)第一个线程完成。因此两个线程不会计算相同的值。
Java代码
public class Cache<K, V> { ConcurrentMap<K, FutureTask<V>> map = new ConcurrentHashMap(); Executor executor = Executors.newFixedThreadPool(8); public V get(final K key) { FutureTask<V> f = map.get(key); if (f == null) { Callable<V> c = new Callable<V>() { public V call() { // return value associated with key } }; f = new FutureTask<V>(c); FutureTask old = map.putIfAbsent(key, f); if (old == null) executor.execute(f); else f = old; } return f.get(); } }
CyclicBarrier 类可以帮助同步,它允许一组线程等待整个线程组到达公共屏障点。CyclicBarrier 是使用整型变量构造的,其确定组中的线程数。当一个线程到达屏障时(通过调用 CyclicBarrier.await()),它会被阻塞,直到所有线程都到达屏障,然后在该点允许所有线程继续执行。该操作与许多家庭逛商业街相似 —— 每个家庭成员都自己走,并商定 1:00 在电影院集合。当您到电影院但不是所有人都到了时,您会坐下来等其他人到达。然后所有人一起离开。
认为屏障是循环的是因为它可以重新使用;一旦所有线程都已经在屏障处集合并释放,则可以将该屏障重新初始化到它的初始状态。
还可以指定在屏障处等待时的超时;如果在该时间内其余线程还没有到达屏障,则认为屏障被打破,所有正在等待的线程会收到 BrokenBarrierException。
下列代码将创建 CyclicBarrier 并启动一组线程,每个线程将计算问题的一部分,等待所有其他线程结束之后,再检查解决方案是否达成一致。如果不一致,那么每个工作线程将开始另一个迭代。该例将使用 CyclicBarrier 变量,它允许注册 Runnable,在所有线程到达屏障但还没有释放任何线程时执行 Runnable。
Java代码
class Solver { // Code sketch void solve(final Problem p, int nThreads) { final CyclicBarrier barrier = new CyclicBarrier(nThreads, new Runnable() { public void run() { p.checkConvergence(); }} ); for (int i = 0; i < nThreads; ++i) { final int id = i; Runnable worker = new Runnable() { final Segment segment = p.createSegment(id); public void run() { try { while (!p.converged()) { segment.update(); barrier.await(); } } catch(Exception e) { return; } } }; new Thread(worker).start(); } }
CountdownLatch 类与 CyclicBarrier 相似,因为它的角色是对已经在它们中间分摊了问题的一组线程进行协调。它也是使用整型变量构造的,指明计数的初始值,但是与 CyclicBarrier 不同的是,CountdownLatch 不能重新使用。
其中,CyclicBarrier 是到达屏障的所有线程的大门,只有当所有线程都已经到达屏障或屏障被打破时,才允许这些线程通过,CountdownLatch 将到达和等待功能分离。任何线程都可以通过调用 countDown() 减少当前计数,这种不会阻塞线程,而只是减少计数。await() 方法的行为与 CyclicBarrier.await() 稍微有所不同,调用 await() 任何线程都会被阻塞,直到闩锁计数减少为零,在该点等待的所有线程才被释放,对 await() 的后续调用将立即返回。
当问题已经分解为许多部分,每个线程都被分配一部分计算时,CountdownLatch 非常有用。在工作线程结束时,它们将减少计数,协调线程可以在闩锁处等待当前这一批计算结束,然后继续移至下一批计算。
相反地,具有计数 1 的 CountdownLatch 类可以用作“启动大门”,来立即启动一组线程;工作线程可以在闩锁处等待,协调线程减少计数,从而立即释放所有工作线程。下例使用两个 CountdownLatche。一个作为启动大门,一个在所有工作线程结束时释放线程:
Java代码
class Driver { // ... void main() throws InterruptedException { CountDownLatch startSignal = new CountDownLatch(1); CountDownLatch doneSignal = new CountDownLatch(N); for (int i = 0; i < N; ++i) // create and start threads new Thread(new Worker(startSignal, doneSignal)).start(); doSomethingElse(); // don't let them run yet startSignal.countDown(); // let all threads proceed doSomethingElse(); doneSignal.await(); // wait for all to finish } } class Worker implements Runnable { private final CountDownLatch startSignal; private final CountDownLatch doneSignal; Worker(CountDownLatch startSignal, CountDownLatch doneSignal) { this.startSignal = startSignal; this.doneSignal = doneSignal; } public void run() { try { startSignal.await(); doWork(); doneSignal.countDown(); } catch (InterruptedException ex) {} // return; } }
Exchanger 类方便了两个共同操作线程之间的双向交换;这样,就像具有计数为 2 的 CyclicBarrier,并且两个线程在都到达屏障时可以“交换”一些状态。(Exchanger 模式有时也称为聚集。)
Exchanger 通常用于一个线程填充缓冲(通过读取 socket),而另一个线程清空缓冲(通过处理从 socket 收到的命令)的情况。当两个线程在屏障处集合时,它们交换缓冲。下列代码说明了这项技术:
Java代码
class FillAndEmpty { Exchanger<DataBuffer> exchanger = new Exchanger<DataBuffer>(); DataBuffer initialEmptyBuffer = new DataBuffer(); DataBuffer initialFullBuffer = new DataBuffer(); class FillingLoop implements Runnable { public void run() { DataBuffer currentBuffer = initialEmptyBuffer; try { while (currentBuffer != null) { addToBuffer(currentBuffer); if (currentBuffer.full()) currentBuffer = exchanger.exchange(currentBuffer); } } catch (InterruptedException ex) { ... handle ... } } } class EmptyingLoop implements Runnable { public void run() { DataBuffer currentBuffer = initialFullBuffer; try { while (currentBuffer != null) { takeFromBuffer(currentBuffer); if (currentBuffer.empty()) currentBuffer = exchanger.exchange(currentBuffer); } } catch (InterruptedException ex) { ... handle ...} } } void start() { new Thread(new FillingLoop()).start(); new Thread(new EmptyingLoop()).start(); } }
Java 语言内置了锁定工具 —— synchronized 关键字。当线程获得监视器时(内置锁定),其他线程如果试图获得相同锁定,那么它们将被阻塞,直到第一个线程释放该锁定。同步还确保随后获得相同锁定的线程可以看到之前的线程在具有该锁定时所修改的变量的值,从而确保如果类正确地同步了共享状态的访问权,那么线程将不会看到变量的“失效”值,这是缓存或编译器优化的结果。
虽然同步没有什么问题,但它有一些限制,在一些高级应用程序中会造成不便。Lock 接口将内置监视器锁定的锁定行为普遍化,允许多个锁定实现,同时提供一些内置锁定缺少的功能,如计时的等待、可中断的等待、锁定轮询、每个锁定有多个条件等待集合以及无阻塞结构的锁定。
Java代码
interface Lock { void lock(); void lockInterruptibly() throws IE; boolean tryLock(); boolean tryLock(long time, TimeUnit unit) throws IE; void unlock(); Condition newCondition() throws UnsupportedOperationException; }
ReentrantLock 是具有与隐式监视器锁定(使用 synchronized 方法和语句访问)相同的基本行为和语义的 Lock 的实现,但它具有扩展的能力。
作为额外收获,在竞争条件下,ReentrantLock 的实现要比现在的 synchronized 实现更具有可伸缩性。(有可能在 JVM 的将来版本中改进 synchronized 的竞争性能。)这意味着当许多线程都竞争相同锁定时,使用 ReentrantLock 的吞吐量通常要比 synchronized 好。换句话说,当许多线程试图访问 ReentrantLock 保护的共享资源时,JVM 将花费较少的时间来调度线程,而用更多个时间执行线程。
虽然 ReentrantLock 类有许多优点,但是与同步相比,它有一个主要缺点 —— 它可能忘记释放锁定。建议当获得和释放 ReentrantLock 时使用下列结构:
Java代码
Lock lock = new ReentrantLock(); ... lock.lock(); try { // perform operations protected by lock } catch(Exception ex) { // restore invariants } finally { lock.unlock(); }
因为锁定失误(忘记释放锁定)的风险,所以对于基本锁定,强烈建议您继续使用 synchronized,除非真的需要 ReentrantLock 额外的灵活性和可伸缩性。ReentrantLock 是用于高级应用程序的高级工具 —— 有时需要,但有时用原来的方法就很好。
发表评论
-
设计模式之事务处理
2010-11-25 07:36 913转自 http://www.blogjava.net/kill ... -
设计自己的MVC框架(1)
2010-11-25 07:27 1252转自 http://www.blogjava.net/ ... -
设计自己的MVC框架(2)
2010-11-25 07:24 1178转自 http://www.blogjava.ne ... -
使用Annotation设计持久层
2010-11-25 06:59 956(From http://www.blogjava. ... -
Jakarta Commons StringUtils类使用
2010-11-25 06:58 935转自http://www.blogjava.net/ ... -
Jakarta Commons ArrayUtils类使用
2010-11-25 06:57 1133转自http://www.blogjava.net/ ... -
Reflection的三个动态性质
2010-11-25 06:56 1013转自http://www.blogjava. ... -
用commons.fileupload实现文件的上传和下载
2010-11-25 06:55 1401转自http://www.blogjav ... -
JAVA基础:共享内存在Java中的实现和应用
2010-11-25 06:54 874(转自 http://www.bu ... -
JAVA变量类型之间的相互转换
2010-11-25 06:52 899(转自 http://www.builder.c ... -
优秀Java程序员必须了解的GC工作原理
2010-11-25 06:52 889(转自 http://www.build ... -
几种版权信息详解
2010-11-25 06:49 1132BSD开源协议(original ... -
Java JDK 1.4 JCE Provider issue.
2010-11-25 06:48 1175Bundled JCE provider in jdk1 ... -
Why use Map.entrySet() instead of Map.keySet()?
2010-11-25 06:45 1394(From http://www.coderan ... -
Credit Card Mod10 校验
2010-11-25 06:27 2077以下是几种Mod10的实现。第一种最为简洁,最后一种 ... -
如何知道方法的调用者
2010-11-25 05:57 7399转自http://hellboys.bok ... -
Java加解密的基础
2010-11-25 05:49 2821在Java的安全包中,包括了三部分内容: ... -
Java日志框架:SLF4J, Apache Common-Logging, Log4J和Logback
2010-11-25 05:47 1859Log4j Apache的一个开放源代码项目,通过 ... -
Java SE 6新特性:Instrumentation
2010-11-25 05:35 1076(转自http://baike.baidu.com ... -
JBOSS 启动 加载 过程
2010-09-11 00:26 3025(转自: http://blog.csdn.net/ylli_ ...
相关推荐
Java Concurrency in Practice 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者...
<<java并行编程>>英文版chm格式,英文名称<Java Concurrency in Practice>,一直想买这本书,但总是缺货,找到了电子版,分享给大家。 Java Concurrency in Practice By Brian Goetz, Tim Peierls, Joshua Bloch,...
《Java Concurrency in Practice》是Java并发编程领域的一本经典著作,由Brian Goetz、Tim Peierls、Joshua Bloch、Joseph Bowles和Doug Lea等专家共同编写。这本书深入探讨了Java平台上的多线程和并发编程,旨在...
《Java Concurrency In Practice》是一本关于Java并发编程的经典著作,由Brian Göetz、Tim Peierls、Joshua Bloch、Joseph Bowbeer、David Holmes和Doug Lea共同编写。本书深入探讨了Java平台上的多线程编程技巧,...
Java Concurrency in practice
Java Concurrency in Practice JAVA并发编程实践中文版(全)第二部分
首先,"Java Concurrency in Practice"是Java并发编程的经典之作,由Brian Goetz、Tim Peierls、Joshua Bloch、David Holmes和Doug Lea合著。这本书提供了一套实用的指导原则、设计模式和最佳实践,帮助Java开发者...
《Java Concurrency in Practice》是Java并发编程领域的一本经典著作,由Brian Goetz、Tim Peierls、Joshua Bloch、Joe Bowbeer、David Holmes和Doug Lea合著,国内有热心人士进行了中文翻译,使得更多的中国开发者...
《Java并发编程实践》是Java开发者必读的经典之作,由Brian Goetz等多位专家共同撰写。这本书深入浅出地探讨了Java平台上的并发问题,帮助读者理解和掌握如何编写高效、可靠且可维护的多线程应用程序。以下是该书...
Using the concurrency building blocks in java.util.concurrent Performance optimization dos and don'ts Testing concurrent programs Advanced topics such as atomic variables, nonblocking algorithms, ...
本笔记将深入探讨《Java Concurrency In Practice》这本书中的核心概念,结合Guava库的实际使用案例,帮助读者理解并掌握Java并发编程的精髓。 首先,我们来了解Java并发的基础知识。Java提供了丰富的并发工具类,...
- **书名**:《Java并发实践》(Java Concurrency in Practice) - **作者**:Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, Doug Lea - **出版社**:Addison Wesley Professional - **...
java concurrency in practice 经典的多线程编程书籍,英文版
《Java并发实践》(*Java Concurrency in Practice*)是一本由Brian Goetz、Tim Peierls、Joshua Bloch等专家合著的经典书籍,该书深入浅出地介绍了Java并发编程的基础理论和最佳实践。本书于2006年由Addison Wesley...
### Java Concurrency Framework 的介绍 #### 一、概述 本文档由 David Holmes 撰写,旨在为初学者提供一个关于 Java Concurrency Framework 的简单介绍。对于那些希望快速掌握 Java 并发编程基础概念的学习者来说...