哈夫曼(huffman)解码用查表法,数据组织采用树形结构,若采用二叉树,一次处理一位(bit),效率是比较低的。从一些杂志上看到关于哈夫曼(huffman)解码的快速算法介绍,直接用位流索引一次处理N(4<N<=32)位,这种方法实际上是不可行的,原因是构造出的码表很长,如果一次处理8位,可以编写程序构造出码表,不过可以肯定的是码表的长度会超过我们事先的想象,以至于没有多大的实用价值。一次处理多位(一位以上)码表中冗余度很大导致码表很长。
MP3解码处理主数据(main_data)的第一步就是对主数据进行哈夫曼解码。MP3编解码用到的哈夫曼表由ISO/IEC 11172-3 的附录B中给出,大值区用到31张码表(其中第0、4、14号码表未使用),小值区用到两张码表。从ISO/IEC 11172-3复制出两张原始的码表来分析,解码大值区的码表:
Huffman code table 7
x y hlen hcod
0 0 1 1
0 1 3 010
0 2 6 001010
0 3 8 00010011
0 4 8 00010000
0 5 9 000001010
1 0 3 011
1 1 4 0011
1 2 6 000111
1 3 7 0001010
1 4 7 0000101
1 5 8 00000011
2 0 6 001011
2 1 5 00100
2 2 7 0001101
2 3 8 00010001
2 4 8 00001000
2 5 9 000000100
3 0 7 0001100
3 1 7 0001011
3 2 8 00010010
3 3 9 000001111
3 4 9 000001011
3 5 9 000000010
4 0 7 0000111
4 1 7 0000110
4 2 8 00001001
4 3 9 000001110
4 4 9 000000011
4 5 10 0000000001
5 0 8 00000110
5 1 8 00000100
5 2 9 000000101
5 3 10 0000000011
5 4 10 0000000010
5 5 10 0000000000
解码小值区的码表:
Huffman code table 17
x y hlen hcod
0 0 1 1
0 1 4 0101
0 2 4 0100
0 3 5 00101
0 4 4 0110
0 5 6 000101
0 6 5 00100
0 7 6 000100
0 8 4 0111
0 9 5 00011
0 10 5 00110
0 11 6 000000
0 12 5 00111
0 13 6 000010
0 14 6 000011
0 15 6 000001
所有码表中取值范围是:x=0..15,y=0..15,码长hlen=1..19。
一次处理多位应该如何实现呢?首先构造出码表,如果每次处理2比特,构造码表暂存数据时用4叉树;如果一次处理3比特,则用8叉树,以此类推。编程从一个文本文件中读入如上所示的原始的哈夫曼表数据,将其插入到N叉树中相应的位置。假如一次处理2位而码字(hcod)是5位(hlen=5),那么在hcod最后分别补上0和1凑足2的整数倍位数,这就导致了构造出的哈夫曼表冗余度,即一个码字对应多个码表中元素。一次处理的位数越多,构造出的码表的冗余度越大。
根据自己解码设计构造出码表比较费事,解码过程挺简单。
实际编程中,可以用数组来存储N叉树,只需要将指针域的值改为元素在数组中的下标值。以大值区解码一次处理2比特为例,x和y取值范围为0..15,只需占用4比特;码长hlen取值范围为1..19,存储hlen只需5比特。存储一个码值只需要13比特,可以将一个码值存储在16位整数中,低4位是y,接下来的4位是x,再接下来的5位是hlen。高3位全为零表示该数组元素存储的是一个码值,最高位为1(表示负数)则其绝对什表示该数组元素存储的是数组的下标值。经过这样处理后解码大值区的码表“Huffman code table 7”一次处理2位,是4叉树:
static short htbv7[72] = {
-4, -68, 256, 256, -8, -48, -64,1041, -12, -28, -40, -44, -16, -20, -24,2069,
2645,2629,2644,2643,2357,2357,2372,2372,2341,2341,2386,2386,2129, -32,2128, -36,
2309,2309,2356,2356,2371,2371,2355,2355,2084,2114,1812,1812,1857,1857,1856,1856,
-52, -56, -60,1554,2052,2083,2098,2051,1811,1811,1841,1841,1840,1840,1826,1826,
1313,1313,1538,1568, 769, 769, 784, 784};
解码小值区的码表“Huffman code table 17”一次处理4位,是16叉树:
static short htc0[80] = {
-16, -32, -48, -64,1026,1025,1028,1032, 256, 256, 256, 256, 256, 256, 256, 256,
1547,1547,1547,1547,1551,1551,1551,1551,1549,1549,1549,1549,1550,1550,1550,1550,
1543,1543,1543,1543,1541,1541,1541,1541,1289,1289,1289,1289,1289,1289,1289,1289,
1286,1286,1286,1286,1286,1286,1286,1286,1283,1283,1283,1283,1283,1283,1283,1283,
1290,1290,1290,1290,1290,1290,1290,1290,1292,1292,1292,1292,1292,1292,1292,1292};
码表构造好了,如何解码呢?由位流索引查表,从码流中读入4字节暂存到unsigned int umask,解码大值区得到x和y:
y = ptab[umask >> 30]; // 一次处理2比特,ptab指向码表(如ptab=htbv7)
while (y < 0) {
umask <<= 2;
y = ptab[(umask >> 30) - y];
}
x = y >> 8; // hlen
num -= x; // num为umask中剩余的比特数
umask <<= x;
x = (y >> 4) & 0xf; // 得到x值
y &= 0xf; // 得到y值
1--5行为查表过程,一次处理的位数越多,执行循环的次数越少。9--10行得到原始码表中的x、y值,对x、y进一步处理就解得哈夫曼码值。
解码小值区得到y值的代码:
y = ptab[umask >> 28]; // 一次处理4比特
while (y < 0) {
umask <<= 4;
y = ptab[(umask >> 28) - y];
}
x = y >> 8; // hlen
num -= x;
umask <<= x;
y &= 0xf; // 得到y值
每解码完一个码字,重新刷新umask和num。以上解码方法正确与否可以用“Huffman code table 7”或“Huffman code table 17”内的一行数据根据源码去检查。
以Huffman code table 7的一行“2 2 7 0001101”为例:这一行表示的意思是x=2,y=2,码长hlen=7,码字hcod=0001101;
- umask被刷新,前7位是0001101(第8位可能是0,也可能是1)。
- ptab指向解码大值区的htbv7[],y = ptab[umask >> 30]=ptab[0]=-4;y<0,执行while循环。
- 第一次:umask <<=2,umask的最高2位被移出,umask的前5位变为01101(第6位可能是0,也可能是1),y = ptab[(umask >> 30) - y] =ptab[1-(-4)]=ptab[5]=-48<0;
- 第二次循环:umask <<= 2,umask的最高2位被移出,umask的前3位变为101(第4位可能是0,也可能是1),y = ptab[(umask >> 30) - y] =ptab[2-(-48)]=ptab[50]=-60<0;
- 第三次循环:umask <<= 2,umask的最高2位被移出,umask的最高位变为1(第2位可能是0,也可能是1),若umask第2位为0,y = ptab[(umask >> 30) - y] =ptab[2-(-60)]=ptab[62]=1826>0,结束循环;若umask第2位为1,y = ptab[(umask >> 30) - y] =ptab[3-(-60)]=ptab[63]=1826>0,结束循环。
- y=1826用二进制表示为11100100010,执行x = y >> 8 = 7,得到hlen;执行x = (y >> 4) & 0xf,先将y右移4位后y为1110010,再取y低4位y为0010,所以x = (y >> 4) & 0xf = 2,得到x;执行y &= 0xf取低4位(0010)得y = 2,得到y。
- 测试完毕。
一次处理N比特肯定比一次处理1比特效率高。兼顾效率和存储空间开销,解码大值区采用一次处理2位到4位,解码小值区一次处理4位,这样比较好。
本文的“哈夫曼解码快速算法”的JAVA代码是jmp123开源项目的一部分。
【jmp123下载地址】http://jmp123.sourceforge.net/
分享到:
相关推荐
VB控制计算机并口示例(含完整可以运行源代码) 可以通过并口直接控制MCU,做SW控制不错,关键还可以学习并口硬件控制学习。含详细源代码哦
python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码),本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代
基于Unet的树种分别识别模型
精选毕设项目-富文本解析,折线图,MD5,bluebird
《图书管理系统(基于ASP .NET)》是一款专为学习者设计的应用程序,旨在提供一个全面的图书管理平台。系统的设计采用ASP .NET技术,这是一款由微软开发的用于构建动态网站、web应用和web服务的强大工具。ASP .NET框架以其高效、安全和易于维护的特点,深受开发者的喜爱。 该系统包含了多个核心模块,这些模块覆盖了图书管理的主要功能。有图书录入模块,它允许管理员录入图书的基本信息,如书名、作者、出版社、ISBN号、分类等。图书查询模块提供给用户方便快捷的搜索功能,用户可以根据书名、作者、关键词等条件进行检索。此外,借阅与归还模块确保图书的流通管理,记录图书的借阅状态,提醒用户按时归还,并处理超期罚款等事务。 系统还具备用户管理模块,允许用户注册、登录、修改个人信息。对于权限管理,后台有专门的管理员角色,他们可以对用户进行操作,如分配权限、冻结或解冻账户。同时,系统的统计分析模块能够生成各类报表,如图书借阅量、热门书籍、用户活跃度等,这些数据对于图书馆运营决策有着重要参考价值。 在。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
精选毕设项目-查拼音
精选毕设项目-音乐在线歌词搜索
本专刊的主要目的是帮助初学者系统化和结构化地掌握会计知识。我们采用思维导图的形式,将复杂的会计概念和流程进行有效的简化,旨在让学习者能够更清晰地理解这些内容,并增强记忆效果。通过视觉化的方式,读者不仅能够感受到会计知识的关联性,还能轻松掌握关键点,提升学习效率。无论是在学习新知识还是复习旧知识时,这种方法都能够为学习者提供极大的便利和帮助。
配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解。 模型中一阶段变量主要包括01变量和无功优化变量,核心变量主要存在于二阶段,因此在叠加二阶段变量优化过程中更容易得到最优解,所以有限次迭代即得到收敛的结果。 模型以网损为目标,包括功率平衡、网络潮流、电压电流、蓄电池出力以及无功设备出力等约束。 复现《两阶段鲁棒优化的主动配电网动态无功优化》-熊壮壮,具体内容可自行下载了解。
1..1行列式的定义.ppt
精选毕设项目-地图定位
MMC整流器平均值模型simulink仿真,19电平,采用交流电流内环,直流电压外环控制,双二阶广义积分器锁相环,PI解耦环流抑制器,调制方式为最近电平逼近调制,完美运行。 波形一二为直流侧电压电流,波形三四分别为主控制器及环流抑制器输出调制信号。
Spring Boot是Spring框架的一个模块,它简化了基于Spring应用程序的创建和部署过程。Spring Boot提供了快速启动Spring应用程序的能力,通过自动配置、微服务支持和独立运行的特性,使得开发者能够专注于业务逻辑,而不是配置细节。Spring Boot的核心思想是约定优于配置,它通过自动配置机制,根据项目中添加的依赖自动配置Spring应用。这大大减少了配置文件的编写,提高了开发效率。Spring Boot还支持嵌入式服务器,如Tomcat、Jetty和Undertow,使得开发者无需部署WAR文件到外部服务器即可运行Spring应用。 Java是一种广泛使用的高级编程语言,由Sun Microsystems公司(现为Oracle公司的一部分)在1995年首次发布。Java以其“编写一次,到处运行”(WORA)的特性而闻名,这一特性得益于Java虚拟机(JVM)的使用,它允许Java程序在任何安装了相应JVM的平台上运行,而无需重新编译。Java语言设计之初就是为了跨平台,同时具备面向对象、并发、安全和健壮性等特点。 Java语言广泛应用于企业级应用、移动应用、桌面应用、游戏开发、云计算和物联网等领域。它的语法结构清晰,易于学习和使用,同时提供了丰富的API库,支持多种编程范式,包括面向对象、命令式、函数式和并发编程。Java的强类型系统和自动内存管理减少了程序错误和内存泄漏的风险。随着Java的不断更新和发展,它已经成为一个成熟的生态系统,拥有庞大的开发者社区和持续的技术创新。Java 8引入了Lambda表达式,进一步简化了并发编程和函数式编程的实现。Java 9及以后的版本继续在模块化、性能和安全性方面进行改进,确保Java语言能够适应不断变化的技术需求和市场趋势。 MySQL是一个关系型数据库管理系统(RDBMS),它基于结构化查询语言(SQL)来管理和存储数据。MySQL由瑞典MySQL AB公司开发,并于2008年被Sun Microsystems收购,随后在2010年,Oracle公司收购了Sun Microsystems,从而获得了MySQL的所有权。MySQL以其高性能、可靠性和易用性而闻名,它提供了多种特性来满足不同规模应用程序的需求。作为一个开源解决方案,MySQL拥有一个活跃的社区,不断为其发展和改进做出贡献。它的多线程功能允许同时处理多个查询,而其优化器则可以高效地执行复杂的查询操作。 随着互联网和Web应用的快速发展,MySQL已成为许多开发者和公司的首选数据库之一。它的可扩展性和灵活性使其能够处理从小规模应用到大规模企业级应用的各种需求。通过各种存储引擎,MySQL能够适应不同的数据存储和检索需求,从而为用户提供了高度的定制性和性能优化的可能性。
这是一种全屏轮播风格的特效,使用HTML、CSS和Javript编写。轮播图包含多张图片和对应的文本介绍,通过自动滑动和手动切换两种方式,展示出不同的内容。该轮播图在网页头部或者特定板块上使用,能够为用户提供直观的视觉体验和丰富的内容呈现。而且,该轮播图可以灵活地设置大小、位置、动画等属性,便于根据实际需求进行个性化定制。
精选毕设项目-图片预览带后端
精选毕设项目-番茄时钟
精选毕设项目-简单的商城小应用
精选毕设项目-仿zcool站酷
精选毕设项目-录音机
南京理工大学毕业论文overleaf LaTex模板,按照我个人的写作需求修改后的版本