- 浏览: 1028234 次
- 性别:
- 来自: 北京
-
文章分类
- 全部博客 (529)
- 服务器 (8)
- jsp (1)
- java (6)
- AIX (1)
- solaris (3)
- linux学习 (53)
- javaScript (2)
- hibernate (1)
- 数据库 (74)
- sql语句 (8)
- oracle 学习 (75)
- oracle 案例 (42)
- oracle 管理 (42)
- Oracle RAC (27)
- oracle data guard (12)
- oracle 参数讲解 (14)
- Oracle 字符集 (8)
- oracle性能调优 (24)
- oracle备份与恢复 (12)
- oracle Tablespace (9)
- oracle性能诊断艺术 (1)
- oracle 11g学习 (5)
- oracle streams (1)
- oracle upgrade and downgrade (4)
- db2学习 (13)
- db2命令学习 (2)
- mysql (28)
- sql server (30)
- sql server 2008 (0)
- 工具 (10)
- 操作系统 (3)
- c++ (1)
- stock (1)
- 生活 (5)
- HADOOP (2)
最新评论
-
massjcy:
...
如何将ubuntu文件夹中文名改为英文 -
skypiea:
谢谢。。。
终于解决了。。。
Oracle 10.2.0.4(5)EM不能启动的解决方案(Patch 8350262) -
qwe_rt:
引用vi /etc/sysconfig/network 请问 ...
Linux操作系统下配置静态IP上网 -
liuqiang:
sudo killall -9 apache2
ps 和 kill 命令详解 -
dazuiba:
引用*绝杀 kill -9 PID 当使用此命令时,一定要通过 ...
ps 和 kill 命令详解
我们再创建一张customer_hierarchy表,用于存储客户代码、邮政编码和地区的关系,然后我们将按不同邮编或地区来查询各自的月度、季度或者年度销量信息。
Roby@XUE> create table customer_hierarchy
2 ( cust_id primary key, zip_code, region )
3 organization index
4 as
5 select cust_id,
6 mod( rownum, 6 ) || to_char(mod( rownum, 1000 ), 'fm0000') zip_code,
7 mod( rownum, 6 ) region
8 from ( select distinct cust_id from sales)
9 /
Table created.
Roby@XUE> analyze table customer_hierarchy compute statistics;
Table analyzed.
改写物化视图,查询方案中添加按不同邮编的月度统计销量。
Roby@XUE> drop materialized view mv_sales;
Materialized view dropped.
Roby@XUE> create materialized view mv_sales
2 build immediate
3 refresh on demand
4 enable query rewrite
5 as
6 select customer_hierarchy.zip_code,
7 time_hierarchy.mmyyyy,
8 sum(sales.sales_amount) sales_amount
9 from sales, time_hierarchy, customer_hierarchy
10 where sales.trans_date = time_hierarchy.day
11 and sales.cust_id = customer_hierarchy.cust_id
12 group by customer_hierarchy.zip_code, time_hierarchy.mmyyyy
13 /
Materialized view created.
Roby@XUE> set autotrace traceonly
Roby@XUE> select customer_hierarchy.zip_code,
2 time_hierarchy.mmyyyy,
3 sum(sales.sales_amount) sales_amount
4 from sales, time_hierarchy, customer_hierarchy
5 where sales.trans_date = time_hierarchy.day
6 and sales.cust_id = customer_hierarchy.cust_id
7 group by customer_hierarchy.zip_code, time_hierarchy.mmyyyy
8 /
1216 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=409 Bytes=20450)
1 0 TABLE ACCESS (FULL) OF 'MV_SALES' (Cost=2 Card=409 Bytes=20450)
Statistics
----------------------------------------------------------
28 recursive calls
0 db block gets
116 consistent gets
5 physical reads
可以看到如果按不同邮编、不同月度来统计查询的话,优化器将会查询物化视图中的查询方案,性能也是比较可观的。假如我们查不同地区年度的统计销量信息,结果又会是怎样?
Roby@XUE> select customer_hierarchy.region,
2 time_hierarchy.yyyy,
3 sum(sales.sales_amount) sales_amount
4 from sales, time_hierarchy, customer_hierarchy
5 where sales.trans_date = time_hierarchy.day
6 and sales.cust_id = customer_hierarchy.cust_id
7 group by customer_hierarchy.region, time_hierarchy.yyyy
8 /
9 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1681 Card=9 Bytes=261)
1 0 SORT (GROUP BY) (Cost=1681 Card=9 Bytes=261)
2 1 NESTED LOOPS (Cost=35 Card=426672 Bytes=12373488)
3 2 NESTED LOOPS (Cost=35 Card=426672 Bytes=8106768)
4 3 TABLE ACCESS (FULL) OF 'SALES' (Cost=35 Card=426672
5 3 INDEX (UNIQUE SCAN) OF 'SYS_IOT_TOP_7833' (UNIQUE)
6 2 INDEX (UNIQUE SCAN) OF 'SYS_IOT_TOP_7828' (UNIQUE)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
428047 consistent gets
745 physical reads
可以看到查询性能大有影响。接下我们同样创建dimension sales_dimension,用于说明客户代码和邮编、地区间的关系:
Roby@XUE> drop dimension time_hierarchy_dim
2 /
Dimension dropped.
Roby@XUE> create dimension sales_dimension
2 level cust_id is customer_hierarchy.cust_id
3 level zip_code is customer_hierarchy.zip_code
4 level region is customer_hierarchy.region
5 level day is time_hierarchy.day
6 level mmyyyy is time_hierarchy.mmyyyy
7 level qtr_yyyy is time_hierarchy.qtr_yyyy
8 level yyyy is time_hierarchy.yyyy
9 hierarchy cust_rollup
10 (
11 cust_id child of
12 zip_code child of
13 region
14 )
15 hierarchy time_rollup
16 (
17 day child of
18 mmyyyy child of
19 qtr_yyyy child of
20 yyyy
21 )
22 attribute mmyyyy
23 determines mon_yyyy;
Dimension created.
再回到原来的查询,我们可以看到查询性能有了大幅的提升:
Roby@XUE> set autotrace on
Roby@XUE> select customer_hierarchy.region,
2 time_hierarchy.yyyy,
3 sum(sales.sales_amount) sales_amount
4 from sales, time_hierarchy, customer_hierarchy
5 where sales.trans_date = time_hierarchy.day
6 and sales.cust_id = customer_hierarchy.cust_id
7 group by customer_hierarchy.region, time_hierarchy.yyyy
8 /
REGION YYYY SALES_AMOUNT
---------- ---------- ------------
0 2006 7.3144E+11
0 2007 4484956329
1 2006 7.8448E+11
2 2006 7.7257E+11
2 2007 4684418980
3 2006 7.7088E+11
4 2006 7.8004E+11
4 2007 3127953246
5 2006 7.3273E+11
9 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=15 Card=9 Bytes=576)
1 0 SORT (GROUP BY) (Cost=15 Card=9 Bytes=576)
2 1 HASH JOIN (Cost=10 Card=598 Bytes=38272)
3 2 VIEW (Cost=3 Card=100 Bytes=700)
4 3 SORT (UNIQUE) (Cost=3 Card=100 Bytes=700)
5 4 INDEX (FULL SCAN) OF 'SYS_IOT_TOP_7833' (UNIQUE)
6 2 HASH JOIN (Cost=7 Card=598 Bytes=34086)
7 6 VIEW (Cost=4 Card=19 Bytes=133)
8 7 SORT (UNIQUE) (Cost=4 Card=19 Bytes=133)
9 8 INDEX (FAST FULL SCAN) OF 'SYS_IOT_TOP_7828'
10 6 TABLE ACCESS (FULL) OF 'MV_SALES' (Cost=2 Card=409
Statistics
----------------------------------------------------------
364 recursive calls
0 db block gets
88 consistent gets
0 physical reads
Roby@XUE> set autot trace
Roby@XUE> select customer_hierarchy.region,
2 time_hierarchy.qtr_yyyy,
3 sum(sales.sales_amount) sales_amount
4 from sales, time_hierarchy, customer_hierarchy
5 where sales.trans_date = time_hierarchy.day
6 and sales.cust_id = customer_hierarchy.cust_id
7 group by customer_hierarchy.region, time_hierarchy.qtr_yyyy;
27 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=23 Card=22 Bytes=154
1 0 SORT (GROUP BY) (Cost=23 Card=22 Bytes=1540)
2 1 HASH JOIN (Cost=11 Card=1447 Bytes=101290)
3 2 VIEW (Cost=3 Card=100 Bytes=700)
4 3 SORT (UNIQUE) (Cost=3 Card=100 Bytes=700)
5 4 INDEX (FULL SCAN) OF 'SYS_IOT_TOP_7833' (UNIQUE) (
6 2 HASH JOIN (Cost=7 Card=1447 Bytes=91161)
7 6 VIEW (Cost=4 Card=46 Bytes=598)
8 7 SORT (UNIQUE) (Cost=4 Card=46 Bytes=598)
9 8 INDEX (FAST FULL SCAN) OF 'SYS_IOT_TOP_7828' (UN
10 6 TABLE ACCESS (FULL) OF 'MV_SALES' (Cost=2 Card=409 B
Statistics
----------------------------------------------------------
10 recursive calls
0 db block gets
19 consistent gets
0 physical reads
Roby@XUE> select customer_hierarchy.region,
2 time_hierarchy.mon_yyyy,
3 sum(sales.sales_amount) sales_amount
4 from sales, time_hierarchy, customer_hierarchy
5 where sales.trans_date = time_hierarchy.day
6 and sales.cust_id = customer_hierarchy.cust_id
7 group by customer_hierarchy.region, time_hierarchy.mon_yyyy;
75 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=41 Card=56 Bytes=386
1 0 SORT (GROUP BY) (Cost=41 Card=56 Bytes=3864)
2 1 HASH JOIN (Cost=11 Card=3775 Bytes=260475)
3 2 VIEW (Cost=4 Card=120 Bytes=1440)
4 3 SORT (UNIQUE) (Cost=4 Card=120 Bytes=1440)
5 4 INDEX (FAST FULL SCAN) OF 'SYS_IOT_TOP_7828' (UNIQ
6 2 HASH JOIN (Cost=6 Card=409 Bytes=23313)
7 6 VIEW (Cost=3 Card=100 Bytes=700)
8 7 SORT (UNIQUE) (Cost=3 Card=100 Bytes=700)
9 8 INDEX (FULL SCAN) OF 'SYS_IOT_TOP_7833' (UNIQUE)
10 6 TABLE ACCESS (FULL) OF 'MV_SALES' (Cost=2 Card=409 B
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
14 consistent gets
0 physical reads
参考:Tomates Kyte 《Expert One-on-One Oracle》
发表评论
-
sqlldr总结参数介绍
2012-06-28 14:29 22857有效的关键字: userid -- ORACLE use ... -
11gR2新特性:STANDBY_MAX_DATA_DELAY
2011-12-27 11:18 1237Active Data Guard 是 Oracle 11g ... -
Linux下用OCCI或OCI连接Oracle
2011-07-26 12:00 2918首先,去oracle官网下载C ... -
Oracle Mutex实现机制
2011-05-18 23:43 1082我们都知道Latch是Oracle ... -
local_listener参数作用
2011-05-10 17:19 1946pmon只会动态注册port等于1521的监听,否则 ... -
oracle伪列 rowid和rownum
2011-03-23 10:00 3551整理ROWID一 一,什么是伪列RowID?1,首先是一种数 ... -
Oracle10gR2 主备自动切换之客户端Failover配置
2011-01-20 10:32 9591. 主库检查和设置假设新增的服务名为ORCL_TAF.LK. ... -
Oracle10g配置Dataguard的相关参数解释
2011-01-20 10:24 1284参考自 http://space.itpub.ne ... -
wrap加密oracle包
2011-01-19 11:52 1307大家都知道oracle的很多系统包是没法看它的源码的,orac ... -
利用hcheck检查数据字典一致性状态
2011-01-17 17:42 1833利用hcheck可以检查oracle数据字典的一致性状态,主要 ... -
插入相同的数据量普通表和临时表产生的redo对比
2011-01-17 16:08 996往临时表里插入相同量 ... -
Database Link与GLOBAL_NAMES参数
2011-01-12 13:36 1040当GLOBAL_NAMES参数设置为TRUE时,使用DATAB ... -
Oracle Streams学习二(清除流配置)
2011-01-09 23:34 1199在完成streams部署之后,如果需要重新配置或舍弃配置,可以 ... -
red hat enterprise 下完全删除oracle 数据库
2011-01-05 01:28 1767步骤 1 以oracle用户登录主、备节点。步骤 2 ... -
Oracle常用dump命令
2010-12-20 00:31 844Oracle常用dump命令,记录一下备查。 一.M ... -
oracle执行DML(事物过程)的深入研究(二)
2010-12-14 15:02 1553接上一节的 oracle执行DML(事物过程)的深入研究(一) ... -
oracle执行DML(事物过程)的深入研究(一)
2010-12-14 10:26 2816用户所执行 DML (即执行事务)操作在 Oracle 内部按 ... -
Oracle基本数据类型存储格式研究(二)—数字类型
2010-12-14 00:35 1482数字类型包含number,intege ... -
Oracle基本数据类型存储格式研究(一)—字符类型
2010-12-13 23:32 11871.char char是定长字符型,内部代码是:96,最多可 ... -
关于oracle rowid的一些内容 -- 转载
2010-12-13 15:47 790本文讨论的是关于oracle ...
相关推荐
TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。
chromedriver-linux64-134.0.6998.23(Beta).zip
Web开发:ABP框架4-DDD四层架构的详解
chromedriver-linux64-135.0.7029.0(Canary).zip
实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。
yugy
企业IT治理体系规划.pptx
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化 关键词:综合能源 冷热电三联供 粒子群算法 多目标优化 参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 ,核心关键词: 综合能源系统; 冷热电三联供; 粒子群算法; 多目标优化; MOPSO算法; 优化调度模型; 燃气轮机; 电制冷机; 锅炉; 风光机组; 上级电网购售电交易。,基于多目标粒子群算法的CCHP综合
DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升级方案 单核双核升级,boot升级,串口方案。 上位机用c#开发。 ,DSP28379D; 串口升级方案; 单核双核升级; boot升级; 上位机C#开发,DSP28379D串口双核升级方案:Boot串口升级技术使用C#上位机开发
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档。,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验。,基于plc的双层自动门控制系统,全部采用博途仿真完成,提供程序,画面,参考文档,详情见图。 实现功能(详见上方演示视频): ① 某房间要求尽可能地保持无尘,在通道上设置了两道电动门,门1和门2,可通过光电传感器自动完成门的打开和关闭。 门1和门2 不能同时打开。 ② 第 1 道门(根据出入方向不同,可能是门 1 或门 2),是由在通道外的开门者通过按开门按钮打开的,而第 2 道门(根据出入方向不同,可能是门 1 或门 2 )则是在打开的第 1 道门关闭后自动地打开的(也可以由通道内的人按开门按钮来打开第2 道门)。 这两道门都是在门开后,经过 3s 的延时而自动关闭的。 ③ 在门关闭期间,如果对应的光电传感器的信号被遮断,则门立即自动打开。 如果在门外或者在门内的开门者按对应的开门按钮时,立即打开。 ④ 出于安全方面的考虑,如果在通道内的某个人经过光电传感器时,对应的门已经打开,则通道外的开门者可以不按开门按钮。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
DeepSeek+DeepResearch——让科研像聊天一样简单 (1)DeepSeek如何做数据分析? (2)DeepSeek如何分析文件内容? (3)DeepSeek如何进行数据挖掘? (4)DeepSeek如何进行科学研究? (5)DeepSeek如何写综述? (6)DeepSeek如何进行数据可视化? (7)DeepSeek如何写作润色? (8)DeepSeek如何中英文互译? (9)DeepSeek如何做降重? (10)DeepSeek论文参考文献指令 (11)DeepSeek基础知识。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
1、文件内容:jdepend-demo-2.9.1-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/jdepend-demo-2.9.1-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
内容概要:本文档详细介绍了如何利用 MATLAB 实现鲸鱼优化算法 (WOA) 和长短期记忆网络 (LSTM) 相结合的技术——WOA-LSTM,在数据分类和预测领域的应用。文章首先概述了LSTM在网络训练中超参数依赖的问题以及WOA作为一种新颖的全局优化算法的优势。接着阐述了该项目的研究背景、目的及其重要意义,并深入讨论了项目面临的六大主要挑战,从模型优化到超参数空间管理。文档特别强调WOA-LSTM融合所带来的性能提升、降低计算复杂度的能力及其实现自动化的超参数优化流程。除此之外,文中展示了模型的应用广泛性,覆盖了从金融市场的股票预测到智能制造业的各种实际场景,并提供了具体的模型架构细节和代码实例,以帮助理解模型的工作原理和技术要点。 适合人群:具有一定编程技能的研究人员、工程师和科学家们,尤其是对深度学习技术和机器学习感兴趣的专业人士。 使用场景及目标:该文档的目标是向用户传授使用MATLAB实现WOA-LSTM进行复杂数据分类和预测的方法论,旨在指导读者理解和掌握如何利用WOA进行超参数寻优,从而改善LSTM网络性能。 其他说明:通过阅读这份文档,使用者不仅能够获得有关WOA-LSTM技术的具体实现方式的知识,而且还可以获取关于项目规划和实际部署过程中的宝贵经验。
tomcat安装及配置教程.md
**MATLAB下微电网两阶段鲁棒优化经济调度策略:基于CCG算法与min-max-min结构求解**,MATLAB微电网两阶段鲁棒优化经济调度程序:构建min-max-min结构模型,实现恶劣场景下的低成本调度,灵活调整调度保守性,利用列约束生成算法求解,MATLAB代码:微电网两阶段鲁棒优化经济调度程序 关键词:微网优化调度 两阶段鲁棒 CCG算法 经济调度 参考文档:《微电网两阶段鲁棒优化经济调度方法》 仿真平台:MATLAB YALMIP+CPLEX 优势:代码注释详实,出图效果非常好(具体看图),非目前烂大街版本,请仔细辨识 主要内容:构建了微网两阶段鲁棒调度模型,建立了min-max-min 结构的两阶段鲁棒优化模型,可得到最恶劣场景下运行成本最低的调度方案。 模型中考虑了储能、需求侧负荷及可控分布式电源等的运行约束和协调控制,并引入了不确定性调节参数,可灵活调整调度方案的保守性。 基于列约束生成算法和强对偶理论,可将原问题分解为具有混合整数线性特征的主问题和子问题进行交替求解,从而得到原问题的最优解。 最终通过仿真分析验证了所建模型和求解算法的有效性,具体内容可自行查