- 浏览: 1381995 次
- 性别:
- 来自: 陕西.西安
文章分类
最新评论
-
dare_:
经过试验 设置之后反而更慢没有调用ensureCapacity ...
ensureCapacity()方法提高ArrayList的初始化速度 -
wangchao9053:
[flash=200,200][url][img][list] ...
Only the original thread that created a view hierarchy can touch its views的相关 -
cyb504:
考虑将rb文件代码隐藏:我先使用命令jrubyc将所有rb文件 ...
Ruby学习十 JRuby中调用java代码 -
4562xse3460:
大哥,您这个写反了,差点误导我,我觉得看着就不对。百度第一条就 ...
portrait表示纵向,landscape表示横向 -
yin138:
portrait是肖像画,即竖屏,landscape是风景画, ...
portrait表示纵向,landscape表示横向
第一部分 Binder的组成
1.1 驱动程序部分驱动程序的部分在以下的文件夹中:
kernel/include/linux/binder.h kernel/drivers/android/binder.c
binder驱动程序是一个miscdevice,主设备号为10,此设备号使用动态获得(MISC_DYNAMIC_MINOR),其设备的节点为:
/dev/binder
binder驱动程序会在proc文件系统中建立自己的信息,其文件夹为/proc/binder,其中包含如下内容:
proc目录:调用Binder各个进程的内容
state文件:使用函数binder_read_proc_state
stats文件:使用函数binder_read_proc_stats
transactions文件:使用函数binder_read_proc_transactions
transaction_log文件:使用函数binder_read_proc_transaction_log,其参数为binder_transaction_log (类型为struct binder_transaction_log)
failed_transaction_log文件:使用函数binder_read_proc_transaction_log 其参数为
binder_transaction_log_failed (类型为struct binder_transaction_log)
在binder文件被打开后,其私有数据(private_data)的类型:
struct binder_proc
在这个数据结构中,主要包含了当前进程、进程ID、内存映射信息、Binder的统计信息和线程信息等。
在用户空间对Binder驱动程序进行控制主要使用的接口是mmap、poll和ioctl,ioctl主要使用的ID为:
- #define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read)
- #define BINDER_SET_IDLE_TIMEOUT _IOW('b', 3, int64_t)
- #define BINDER_SET_MAX_THREADS _IOW('b', 5, size_t)
- #define BINDER_SET_IDLE_PRIORITY _IOW('b', 6, int)
- #define BINDER_SET_CONTEXT_MGR _IOW('b', 7, int)
- #define BINDER_THREAD_EXIT _IOW('b', 8, int)
- #define BINDER_VERSION _IOWR('b', 9, struct binder_version)
#define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read) #define BINDER_SET_IDLE_TIMEOUT _IOW('b', 3, int64_t) #define BINDER_SET_MAX_THREADS _IOW('b', 5, size_t) #define BINDER_SET_IDLE_PRIORITY _IOW('b', 6, int) #define BINDER_SET_CONTEXT_MGR _IOW('b', 7, int) #define BINDER_THREAD_EXIT _IOW('b', 8, int) #define BINDER_VERSION _IOWR('b', 9, struct binder_version)
BR_XXX等宏为BinderDriverReturnProtocol,表示Binder驱动返回协议。
BC_XXX等宏为BinderDriverCommandProtocol,表示Binder驱动命令协议。
binder_thread是Binder驱动程序中使用的另外一个重要的数据结构,数据结构的定义如下所示:
- struct binder_thread {
- struct binder_proc *proc;
- struct rb_node rb_node;
- int pid;
- int looper;
- struct binder_transaction *transaction_stack;
- struct list_head todo;
- uint32_t return_error;
- uint32_t return_error2;
- wait_queue_head_t wait;
- struct binder_stats stats;
- };
struct binder_thread { struct binder_proc *proc; struct rb_node rb_node; int pid; int looper; struct binder_transaction *transaction_stack; struct list_head todo; uint32_t return_error; uint32_t return_error2; wait_queue_head_t wait; struct binder_stats stats; };
binder_thread 的各个成员信息是从rb_node中得出。
BINDER_WRITE_READ是最重要的ioctl,它使用一个数据结构binder_write_read定义读写的数据。
- struct binder_write_read {
- signed long write_size;
- signed long write_consumed;
- unsigned long write_buffer;
- signed long read_size;
- signed long read_consumed;
- unsigned long read_buffer;
- };
struct binder_write_read { signed long write_size; signed long write_consumed; unsigned long write_buffer; signed long read_size; signed long read_consumed; unsigned long read_buffer; };
1.2 servicemanager部分 servicemanager是一个守护进程,用于这个进程的和/dev/binder通讯,从而达到管理系统中各个服务的作用。
可执行程序的路径:
/system/bin/servicemanager
开源版本文件的路径:
- frameworks/base/cmds/servicemanager/binder.h
- frameworks/base/cmds/servicemanager/binder.c
- frameworks/base/cmds/servicemanager/service_manager.c
frameworks/base/cmds/servicemanager/binder.h frameworks/base/cmds/servicemanager/binder.c frameworks/base/cmds/servicemanager/service_manager.c
程序执行的流程:
open():打开binder驱动
mmap():映射一个128*1024字节的内存
ioctl(BINDER_SET_CONTEXT_MGR):设置上下文为mgr
进入主循环binder_loop()
ioctl(BINDER_WRITE_READ),读取
binder_parse()进入binder处理过程循环处理
binder_parse()的处理,调用返回值:
当处理BR_TRANSACTION的时候,调用svcmgr_handler()处理增加服务、检查服务等工作。各种服务存放在一个链表(svclist)中。其中调用binder_等开头的函数,又会调用ioctl的各种命令。
处理BR_REPLY的时候,填充binder_io类型的数据结
1.3 binder的库的部分
binder相关的文件作为Android的uitls库的一部分,这个库编译后的名称为libutils.so,是Android系统中的一个公共库。
主要文件的路径如下所示:
frameworks/base/include/utils/* frameworks/base/libs/utils/*
主要的类为:
RefBase.h :
引用计数,定义类RefBase。
Parcel.h :
为在IPC中传输的数据定义容器,定义类Parcel
IBinder.h:
Binder对象的抽象接口, 定义类IBinder
Binder.h:
Binder对象的基本功能, 定义类Binder和BpRefBase
BpBinder.h:
BpBinder的功能,定义类BpBinder
IInterface.h:
为抽象经过Binder的接口定义通用类,
定义类IInterface,类模板BnInterface,类模板BpInterface
ProcessState.h
表示进程状态的类,定义类ProcessState
IPCThreadState.h
表示IPC线程的状态,定义类IPCThreadState
各个类之间的关系如下所示:
在IInterface.h中定义的BnInterface和BpInterface是两个重要的模版,这是为各种程序中使用的。
BnInterface模版的定义如下所示:
- template
- class BnInterface : public INTERFACE, public BBinder
- {
- public:
- virtual sp queryLocalInterface(const String16& _descriptor);
- virtual String16 getInterfaceDescriptor() const;
- protected:
- virtual IBinder* onAsBinder();
- };
- BnInterface模版的定义如下所示:
- template
- class BpInterface : public INTERFACE, public BpRefBase
- {
- public:
- BpInterface(const sp& remote);
- protected:
- virtual IBinder* onAsBinder();
- };
template class BnInterface : public INTERFACE, public BBinder { public: virtual sp queryLocalInterface(const String16& _descriptor); virtual String16 getInterfaceDescriptor() const; protected: virtual IBinder* onAsBinder(); }; BnInterface模版的定义如下所示: template class BpInterface : public INTERFACE, public BpRefBase { public: BpInterface(const sp& remote); protected: virtual IBinder* onAsBinder(); };
这两个模版在使用的时候,起到得作用实际上都是双继承:使用者定义一个接口INTERFACE,然后使用BnInterface和BpInterface两个模版结合自己的接口,构建自己的BnXXX和BpXXX两个类。
DECLARE_META_INTERFACE和IMPLEMENT_META_INTERFACE两个宏用于帮助BpXXX类的实现:
- #define DECLARE_META_INTERFACE(INTERFACE) \
- static const String16 descriptor; \
- static sp asInterface(const sp& obj); \
- virtual String16 getInterfaceDescriptor() const; \
- #define IMPLEMENT_META_INTERFACE(INTERFACE, NAME) \
- const String16 I##INTERFACE::descriptor(NAME); \
- String16 I##INTERFACE::getInterfaceDescriptor() const { \
- return I##INTERFACE::descriptor; \
- } \
- sp I##INTERFACE::asInterface(const sp& obj) \
- { \
- sp intr; \
- if (obj != NULL) { \
- intr = static_cast( \
- obj->queryLocalInterface( \
- I##INTERFACE::descriptor).get()); \
- if (intr == NULL) { \
- intr = new Bp##INTERFACE(obj); \
- } \
- } \
- return intr; \
- }
#define DECLARE_META_INTERFACE(INTERFACE) \ static const String16 descriptor; \ static sp asInterface(const sp& obj); \ virtual String16 getInterfaceDescriptor() const; \ #define IMPLEMENT_META_INTERFACE(INTERFACE, NAME) \ const String16 I##INTERFACE::descriptor(NAME); \ String16 I##INTERFACE::getInterfaceDescriptor() const { \ return I##INTERFACE::descriptor; \ } \ sp I##INTERFACE::asInterface(const sp& obj) \ { \ sp intr; \ if (obj != NULL) { \ intr = static_cast( \ obj->queryLocalInterface( \ I##INTERFACE::descriptor).get()); \ if (intr == NULL) { \ intr = new Bp##INTERFACE(obj); \ } \ } \ return intr; \ }
在定义自己的类的时候,只需要使用DECLARE_META_INTERFACE和IMPLEMENT_META_INTERFACE两个接口,并
结合类的名称,就可以实现BpInterface中的asInterface()和getInterfaceDescriptor()两个函数。
第二部分 Binder的运作
2.1 Binder的工作机制
Service Manager是一个守护进程,它负责启动各个进程之间的服务,对于相关的两个需要通讯的进程,它们通过调用libutil.so库实现通讯,而真正通讯的机制,是内核空间中的一块共享内存。
2.2 从应 用程序的角度看Binder
从应用程序的角度看Binder一共有三个方面:
Native 本地:例如BnABC,这是一个需要被继承和实现的类。
Proxy 代理:例如BpABC,这是一个在接口框架中被实现,但是在接口中没有体现的类。
客户端:例如客户端得到一个接口ABC,在调用的时候实际上被调用的是BpABC
本地功能(Bn)部分做的:
实现BnABC:: BnTransact()
注册服务:IServiceManager::AddService
代理部分(Bp)做的:
实现几个功能函数,调用BpABC::remote()->transact()
客户端做的:
获得ABC接口,然后调用接口(实际上调用了BpABC,继而通过IPC调用了BnABC,然后调用了具体的功能)
在程序的实现过程中BnABC和BpABC是双继承了接口ABC。一般来说BpABC是一个实现类,这个实现类不需要在接口中体现,它实际上负责的只是通讯功能,不执行具体的功能;BnABC则是一个接口类,需要一个真正工作的类来继承、实现它,这个类才是真正执行具体功能的类。
在客户端中,从ISeriviceManager中获得一个ABC的接口,客户端调用这个接口,实际上是在调用BpABC,而BpABC又通过Binder的IPC机制和BnABC通讯,BnABC的实现类在后面执行。
事实上,
服务器
的具体实现和客户端是两个不同的进程,如果不考虑进程间通讯的过程,从调用者的角度,似乎客户端在直接调用另外一个进程间的函数——当然这个函数必须是接口ABC中定义的。
2.3 ISericeManager的作用
ISericeManager涉及的两个文件是ISericeManager.h和ISericeManager.cpp。这两个文件基本上是
ISericeManager。ISericeManager是系统最先被启动的服务。非常值得注意的是:ISericeManager本地功能并没有使
现,它实际上由ServiceManager守护进程执行,而用户程序通过调用BpServiceManager来获得其他的服务。
在ISericeManager.h中定义了一个接口,用于得到默认的ISericeManager:
sp defaultServiceManager();
这时得到的ISericeManager实际上是一个全局的ISericeManager。
第三部分 程序中Binder的具体实现
3.1 一个利用接口的具体实现
PermissionController也是libutils中定义的一个有关权限控制的接口,它一共包含两个文件:IPermissionController.h和IPermissionController.cpp这个结构在所有类的实现中都是类似的。
头文件IPermissionController.h的主要内容是定义IPermissionController接口和类BnPermissionController:
- class IPermissionController : public IInterface
- {
- public:
- DECLARE_META_INTERFACE(PermissionController);
- virtual bool checkPermission(const String16& permission,int32_t pid, int32_t uid) = 0;
- enum {
- CHECK_PERMISSION_TRANSACTION = IBinder::FIRST_CALL_TRANSACTION
- };
- };
- class BnPermissionController : public BnInterface
- {
- public:
- virtual status_t onTransact( uint32_t code,
- const Parcel& data,
- Parcel* reply,
- uint32_t flags = 0);
- };
class IPermissionController : public IInterface { public: DECLARE_META_INTERFACE(PermissionController); virtual bool checkPermission(const String16& permission,int32_t pid, int32_t uid) = 0; enum { CHECK_PERMISSION_TRANSACTION = IBinder::FIRST_CALL_TRANSACTION }; }; class BnPermissionController : public BnInterface { public: virtual status_t onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0); };
IPermissionController是一个接口类,只有checkPermission()一个纯虚函数。
BnPermissionController继承了以BnPermissionController实例化模版类BnInterface。因
此,BnPermissionController,事实上BnPermissionController双继承了BBinder和
IPermissionController。
实现文件IPermissionController.cpp中,首先实现了一个BpPermissionController。
- class BpPermissionController : public BpInterface
- {
- public:
- BpPermissionController(const sp& impl)
- : BpInterface(impl)
- {
- }
- virtual bool checkPermission(const String16& permission, int32_t pid, int32_t uid)
- {
- Parcel data, reply;
- data.writeInterfaceToken(IPermissionController::
- getInterfaceDescriptor());
- data.writeString16(permission);
- data.writeInt32(pid);
- data.writeInt32(uid);
- remote()->transact(CHECK_PERMISSION_TRANSACTION, data, &reply);
- if (reply.readInt32() != 0) return 0;
- return reply.readInt32() != 0;
- }
- };
class BpPermissionController : public BpInterface { public: BpPermissionController(const sp& impl) : BpInterface(impl) { } virtual bool checkPermission(const String16& permission, int32_t pid, int32_t uid) { Parcel data, reply; data.writeInterfaceToken(IPermissionController:: getInterfaceDescriptor()); data.writeString16(permission); data.writeInt32(pid); data.writeInt32(uid); remote()->transact(CHECK_PERMISSION_TRANSACTION, data, &reply); if (reply.readInt32() != 0) return 0; return reply.readInt32() != 0; } };
IMPLEMENT_META_INTERFACE(PermissionController, "android.os.IPermissionController");
BpPermissionController继承了BpInterface,它本身是一个
已经实现的类,而且并没有在接口中体现。这个类按照格式写就可以,在实现checkPermission()函数的过程中,使用Parcel作为传输数据
的容器,传输中时候transact()函数,其参数需要包含枚举值CHECK_PERMISSION_TRANSACTION。
IMPLEMENT_META_INTERFACE用于扶助生成。
BnPermissionController中实现的onTransact()函数如下所示:
- status_t BnPermissionController:: BnTransact(
- uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
- {
- switch(code) {
- case CHECK_PERMISSION_TRANSACTION: {
- CHECK_INTERFACE(IPermissionController, data, reply);
- String16 permission = data.readString16();
- int32_t pid = data.readInt32();
- int32_t uid = data.readInt32();
- bool res = checkPermission(permission, pid, uid);
- reply->writeInt32(0);
- reply->writeInt32(res ? 1 : 0);
- return NO_ERROR;
- } break;
- default:
- return BBinder:: BnTransact(code, data, reply, flags);
- }
- }
status_t BnPermissionController:: BnTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { switch(code) { case CHECK_PERMISSION_TRANSACTION: { CHECK_INTERFACE(IPermissionController, data, reply); String16 permission = data.readString16(); int32_t pid = data.readInt32(); int32_t uid = data.readInt32(); bool res = checkPermission(permission, pid, uid); reply->writeInt32(0); reply->writeInt32(res ? 1 : 0); return NO_ERROR; } break; default: return BBinder:: BnTransact(code, data, reply, flags); } }
在onTransact()函数中根据枚举值判断数据使用的方式。注意,由于BnPermissionController也是继承了类
IPermissionController,但是纯虚函数checkPermission()依然没有实现。因此这个
BnPermissionController类并不能实例化,它其实也还是一个接口,需要一个实现类来继承它,那才是实现具体功能的类。
3.2 BnABC的实现
本地服务启动后将形成一个守护进程,具体的本地服务是由一个实现类继承BnABC来实现的,这个服务的名称通常叫做ABC。
在其中,通常包含了一个instantiate()函数,这个函数一般按照如下的方式实现:
void ABC::instantiate() {
defaultServiceManager()->addService(
String16("XXX.ABC"), new ABC ());
}
按照这种方式,通过调用defaultServiceManager()函数,将增加一个名为"XXX.ABC"的服务。
在这个defaultServiceManager()函数中调用了:
ProcessState::self()->getContextObject(NULL));
IPCThreadState* ipc = IPCThreadState::self();
IPCThreadState::talkWithDriver()
在ProcessState 类建立的过程中调用open_driver()打开
驱动
程序,在talkWithDriver()的执行过程中。
3.3 BpABC调用的实现
BpABC调用的过程主要通过mRemote()->transact() 来传输数据,mRemote()是BpRefBase的成员,它是一个IBinder。这个调用过程如下所示:
- mRemote()->transact()
- Process::self()
- IPCThreadState::self()->transact()
- writeTransactionData()
- waitForResponse()
- talkWithDriver()
- ioctl(fd, BINDER_WRITE_READ, &bwr)
mRemote()->transact() Process::self() IPCThreadState::self()->transact() writeTransactionData() waitForResponse() talkWithDriver() ioctl(fd, BINDER_WRITE_READ, &bwr)
在IPCThreadState::executeCommand()函数中,实现传输操作。
发表评论
-
Android检查是否已经连接到网络
2012-05-14 15:40 1233http://blog.csdn.net/kerenigma/ ... -
Android Framework系列之IMF(二)
2011-06-02 10:09 2193InputConnection是IMF里面一个重要的接口,他是 ... -
Android Frameworks系列之IMF(一)
2011-06-02 10:03 1877http://www.pin5i.com/showtopic- ... -
Android线程优先级设置方法
2011-05-28 14:15 3539http://blog.sina.com.cn/s/blog_ ... -
如何连接android数据库
2011-05-27 15:18 2287http://zhidao.baidu.com/questio ... -
ensureCapacity()方法提高ArrayList的初始化速度
2011-05-27 14:33 11554http://www.gznc.edu.cn/yxsz/jjg ... -
java的isAlive 和 join
2011-05-27 13:38 1591join()用于停止当前线程而运行别的线程。 isAli ... -
Linux系统下.ko文件是什么文件?.so文件是什么文件?
2011-05-25 18:55 5552.so 文件是动态链接库文件,相当于 win下的 .dll ... -
使用Geocoder
2011-05-11 10:46 61887.6 使用Geocoder 地理编 ... -
Gallery学习总结--Cache缓存及数据处理流程
2011-05-09 14:21 2195http://hi.baidu.com/%D6%C7%B4%E ... -
关注的网站
2011-04-06 14:37 1047http://blog.sina.com.cn/s/blog_ ... -
gallery3d源码学习总结(二)
2011-04-01 10:40 3531http://www.j2megame.com/htm ... -
gallery3d源码学习总结(一)——绘制流程drawFocusItems
2011-04-01 10:14 4925eoe·Android开发者门户 标题: gallery3d ... -
Android 启动过程详解(学习1)
2011-03-31 09:27 2236Android 启动过程详解 http://blog.csd ... -
Android中的WatchDog (2)
2011-03-31 09:11 1079http://wenku.baidu.com/view/09c ... -
Android平台WindowManager运用
2011-03-30 10:00 1811Android平台WindowManager运用 我们A ... -
JPEG Rotation and EXIF Orientation
2011-03-17 14:26 3916http://blog.csdn.net/daisyhd/ar ... -
Android 的动作、广播、类别等标识大全
2011-03-11 10:19 1314Android 的动作、广播、类别等标识大全 Stri ... -
浅析Android MediaProvider之二
2011-03-08 08:27 2673http://www.poemcode.net/2010/01 ... -
Task和Activity相关
2011-02-28 09:21 1561Task和Activity相关 这段时间在做一个项目,发 ...
相关推荐
简要介绍Android IPC机制Binder
开发者也可以利用Binder框架为自己的应用程序设计高效的IPC机制。比如,开发者可以将业务逻辑模块化,使它们能够跨应用边界高效通信,同时还能保持低延迟。 Binder框架的学习目标可以概括为:深入理解Binder框架的...
Deep Dive into Android IPC & Binder.pdf Deep Dive into Android IPC/Binder Framework at Android Builders Summit 2013 Binder Overview IPC Advantages of Binder Binder vs Intent/ContentProvider/...
Binder作为Android系统中的核心IPC机制,其工作原理和实现机制是本书的重点。Binder不仅是一种接口,更是一个轻量级的进程间通信机制。它允许服务在不同的进程中运行,并通过代理和远程对象的概念实现跨进程调用。...
Android进程间通信(IPC)机制Binder简要介绍和学习计划
3. **Binder**:Binder是Android特有的IPC机制,它是Android系统服务和应用程序之间通信的主要方式。Binder对象可以在进程间传递,允许远程调用服务端的方法。虽然在直接编程中Binder较为复杂,但许多Android组件如...
与其他IPC机制相比,Binder具有更低的开销,支持对象的远程调用,并且具备良好的安全性。Binder机制由服务端、客户端、以及一个中间代理——Binder驱动共同构成。 二、Binder组件 1. 服务端:通常是一个运行在其他...
【一图流】_02_一张图看懂 Android 进程间通信(IPC)Binder机制: 此图表述了Android系统_进程间通信(IPC)机制全部体系,其中重点放在 Android系统中 重用 的 Binder机制 上,详尽细致,希望对大家有用;
Android的Binder机制是Android系统中实现进程间通信(IPC,Inter-Process Communication)的核心组件,它的设计和实现涉及操作系统内核层面以及用户空间的应用层。Binder机制使得Android应用程序能够跨越进程边界,...
Android的Binder机制是Android系统中实现进程间通信(IPC,Inter-Process Communication)的核心组件,它的设计和实现对于理解Android系统的内部运作至关重要。Binder机制包括驱动程序、用户空间库、服务代理和...
Android 进程间通信-Binder 机制详解 Android 系统中,每一个应用程序都是由一些 Activity 和 Service 组成的,一般 Service 运行在独立的进程中,而不同的 Activity 有可能运行在同一个进程中,也可能运行在不同的...
android binder 详解
android技术内幕--系统卷,第三章Android的IPC机制,关于Binder通信机制,详细讲解,并附有framework层代码说明,
Android Binder机制是Android系统的核心组件之一,它负责进程间通信(IPC,Inter-Process Communication),使得不同应用程序或者同一系统中的不同组件能够有效地交互。在Android系统中,由于每个应用程序运行在自己...
在Android系统中,Binder机制是实现进程间通信(IPC)的核心工具,尤其在跨应用程序组件交互时至关重要。本文将深入探讨Android Binder机制及其在组件化思想中的应用。 1. Android组件化思想 Android应用的组件化...
Android的IPC机制——写的比较深入的文章,详细介绍了binder的原理 work 版
[AndroidIPC机制(1)-进程和线程](note/AndroidIPC机制[AndroidIPC机制(2)-序列化机制](note/AndroidIPC机制[AndroidIPC机制(3)-AIDL](note/AndroidIPC机制[AndroidIPC机制(4)-Messenger](note/AndroidIPC...