- 浏览: 1400291 次
- 性别:
- 来自: 火星
文章分类
最新评论
-
aidd:
内核处理time_wait状态详解 -
ahtest:
赞一下~~
一个简单的ruby Metaprogram的例子 -
itiProCareer:
简直胡说八道,误人子弟啊。。。。谁告诉你 Ruby 1.9 ...
ruby中的类变量与类实例变量 -
dear531:
还得补充一句,惊群了之后,数据打印显示,只有一个子线程继续接受 ...
linux已经不存在惊群现象 -
dear531:
我用select试验了,用的ubuntu12.10,内核3.5 ...
linux已经不存在惊群现象
地址在下面,都是些有趣的数学题,有兴趣的可以去玩玩.
http://www.projecteuler.net
呵呵我刚做完前10题,以后每做完10题都会发到我博客上。
PS:我用的是python和c写的。
1
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
2
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Find the sum of all the even-valued terms in the sequence which do not exceed one million.
3
4
5
6
7
8
9
10
http://www.projecteuler.net
呵呵我刚做完前10题,以后每做完10题都会发到我博客上。
PS:我用的是python和c写的。
1
引用
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
def find(): return reduce(lambda x,y:x+y,[x for x in xrange(3,1000) if not x%3 or not x%5]) print find()
2
引用
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Find the sum of all the even-valued terms in the sequence which do not exceed one million.
import itertools def Fibonacci(): x, y = 1,2 while True: if x%2==0: yield x x, y = y, x + y print reduce(lambda x,y:x+y,itertools.takewhile(lambda x:x<1000000,Fibonacci()))
3
引用
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 317584931803?
What is the largest prime factor of the number 317584931803?
#include <stdio.h> void main() { __int64 n=317584931803; __int64 i; for(i=2;i<=n;i++) { while(n!=i){ if(n%i==0){ n=n/i; } else break; } } printf("%d",n); }
4
引用
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 99.
Find the largest palindrome made from the product of two 3-digit numbers.
Find the largest palindrome made from the product of two 3-digit numbers.
#include <stdio.h> #include <string.h> #include <stdlib.h> void main( ) { char xy[7]; int str,half,flag; for(int i=998001;i>10000;i--){ itoa(i,xy,10); str=strlen(xy); half=str/2; for(int j=0;j<half;j++){ if(xy[j]!=xy[--str]) break; else if(j==half-1) for(int k=100;k<1000;k++){ int tmp=i/k; int tmp2=i%k; if(tmp2==0&&99<tmp&&tmp<1000){ printf("%d=%d*%d",i,tmp,k); flag=1; break; } } } if(flag==1) break; } }
5
引用
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest number that is evenly divisible by all of the numbers from 1 to 20?
What is the smallest number that is evenly divisible by all of the numbers from 1 to 20?
#include <stdio.h> int pub(int i,int j); void main(){ int result=2; int i=3; while(true){ if(i>19) break; int tt=pub(result,i); result=result*i/tt; i+=1; } printf("%d\n",result); } int pub(int i,int j) { int temp; if(i<j){ int tmp=i; i=j; j=tmp; } while(true){ temp=i%j; if(temp==0) break; else{ i=j; j=temp; } } return j; }
6
引用
The sum of the squares of the first ten natural numbers is,
1² + 2² + ... + 10² = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)² = 55² = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
1² + 2² + ... + 10² = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)² = 55² = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
def deff(): return sum(xrange(1,101))**2-reduce(lambda x,y: x+y,[x**2 for x in xrange(1,101)]) print deff()
7
引用
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10001st prime number?
What is the 10001st prime number?
import itertools def pre( ): D = { } yield 2 for q in itertools.islice(itertools.count(3), 0, None, 2): p = D.pop(q, None) if p is None: D[q*q] = q yield q else: x = p + q while x in D or not (x&1): x += p D[x] = p print list(itertools.islice(pre(),100001))[10000]
8
引用
Find the greatest product of five consecutive digits in the 1000-digit number.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
def find(): a="""73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 """ result=1 f=a.replace("\n","") for i in xrange(0,len(f)-4): tmp= reduce(lambda x, y: int(x)*int(y), f[i:i+5]) if result<tmp: result=tmp return result print find()
9
引用
A Pythagorean triplet is a set of three natural numbers, a<b<c, for which,
a² + b² = c²
For example, 3² + 4² = 9 + 16 = 25 = 5².
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
a² + b² = c²
For example, 3² + 4² = 9 + 16 = 25 = 5².
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
#include <stdio.h> void main() { for(int i=2;i<1000;i++) { for(int j=i+1;j<1000;j++) if(i*i+j*j==(1000-i-j)*(1000-i-j)) printf("%d\n",i*j*(1000-j-i)); } }
10
引用
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below one million.
Find the sum of all the primes below one million.
import itertools def pre( ): D = { } yield 2 for q in itertools.islice(itertools.count(3), 0, None, 2): p = D.pop(q, None) if p is None: D[q*q] = q yield q else: x = p + q while x in D or not (x&1): x += p D[x] = p print sum(list(itertools.takewhile(lambda x:x<1000000,pre())))
发表评论
-
Python3K Alpha1放出
2007-09-01 00:47 2186详细情况请看这里: http://python.org/do ... -
py3000的一些信息
2007-07-31 20:09 2691原文看这里 http://www.artima.com/web ... -
Python 3000 Status Update
2007-06-19 19:23 2199http://www.artima.com/weblogs/v ... -
操作符is的1个诡异问题
2007-06-13 09:44 2914请看这段程序 a = 0 b = 0 while a ... -
python之父要来北京了。
2007-04-13 10:01 3544May 31 is Google Developer Day ... -
今天Python2.5.1release了
2007-04-12 10:06 2402http://www.python.org/download/ ... -
Peter Norvig用python写的拼写纠错
2007-04-11 10:19 3581文章在这里: http://www.norvig.com/sp ... -
今天发现了一个非常有意思的regex
2007-03-20 10:24 2697判断一个数是否为质数的方法: import re de ... -
这里有个讲Fp的文章,讲的很是有趣.
2007-03-13 14:31 3728http://chn.blogbeta.com/232.htm ... -
python中的Error-checking策略
2007-03-02 21:12 4331参考 python in nutshe ... -
关于类中slots属性的用法的疑问
2007-02-28 10:07 4661__slots__保存着实例变量的列表,并且在实例中保留空间以 ... -
python中是否可以实现'tail-call elimination'的优化
2007-02-13 16:49 9502今天看 python in nutshell 时看到了这段 ... -
Jython Beta and 2.2 发布了
2007-02-09 21:26 4065本以为已经挂了,今天无意中去逛了一下,竟然更新了,而且看了它的 ... -
python 中古怪的input()错误(已解决)
2006-11-23 15:15 7695在windows下 width = input('Pleas ...
相关推荐
public class ProJectEulerProblem3 { private static String str = "600851475143"; private static BigInteger date = new BigInteger(str); public static void main(String[] args) { long start = System....
Tobit与Probit模型Stata实现代码-最新发布.zip
Jupyter-Notebook
红警单机版(单机游戏)
SwiftUI编写的贪吃蛇小游戏讲解
1996-2020年中国文化旅游统计年鉴-最新数据发布.zip
Jupyter-Notebook
omwfa1hxz_1.apk
2001-2023年上市公司大数据应用指数数据集(6.1万样本,5600家企业,含原始数据、代码及结果,最新).zip
Jupyter-Notebook
Typora(version 1.2.3)导出 pdf 自定义水印的 frame.js 文件,详情可以查看:
量产部落sm2263xt开卡工具,支持b16b17颗粒
中国1公里分辨率月降水数据-最新全集.zip
云平台VPC.vsdx
CPA注会考试最新教材资料-最新发布.zip
分省最低工资标准面板数据最新集.zip
内容概要:本文档是一份详尽的Java面试题集,涵盖了许多常见的Java面试问题及详细的解答。内容涉及Java基础语法、面向对象编程、集合框架、网络编程、Spring框架等多个方面。每个问题不仅提供了答案,还解释了其背后的原理和技术细节。 适合人群:即将参加Java岗位面试的技术人员,特别是工作经验1-3年的软件工程师。 使用场景及目标:适用于准备Java面试,加深对Java核心技术的理解和掌握。通过练习这些问题,帮助面试者更好地理解和应对面试官的问题。 阅读建议:建议结合实际项目经验来阅读和练习这些问题,以便更好地理解和应用所学的知识点。同时,对于复杂的问题,可以通过编写代码来验证答案的正确性和理解深度。
层次分析法与熵值法工具包+数据案例+代码-最新.zip
音乐产品购物网站 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
NASA DEM中国30省高分辨率地形数据-精心整理.zip