- 浏览: 222344 次
- 性别:
- 来自: 北京
-
文章分类
最新评论
-
yugouai:
下载不了啊。。。
如何获取hive建表语句 -
help:
[root@hadoop-namenode 1 5 /usr/ ...
Sqoop -
085567:
lvshuding 写道请问,sqoop 安装时不用配置什么吗 ...
Sqoop -
085567:
lvshuding 写道请问,导入数据时,kv1.txt的文件 ...
hive与hbase整合 -
lvshuding:
请问,sqoop 安装时不用配置什么吗?
Sqoop
最近在hadoop实际使用中有以下几个小细节分享:
1 中文问题
从url中解析出中文,但hadoop中打印出来仍是乱码?我们曾经以为hadoop是不支持中文的,后来经过查看源代码,发现hadoop仅仅是不支持以gbk格式输出中文而己。
这是TextOutputFormat.class中的代码,hadoop默认的输出都是继承自FileOutputFormat来的,FileOutputFormat的两个子类一个是基于二进制流的输出,一个就是基于文本的输出TextOutputFormat。
public class TextOutputFormat<K, V> extends FileOutputFormat<K, V> {
protected static class LineRecordWriter<K, V>
implements RecordWriter<K, V> {
private static final String utf8 = “UTF-8″;//这里被写死成了utf-8
private static final byte[] newline;
static {
try {
newline = “\n”.getBytes(utf8);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + utf8 + ” encoding”);
}
}
…
public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
this.out = out;
try {
this.keyValueSeparator = keyValueSeparator.getBytes(utf8);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + utf8 + ” encoding”);
}
}
…
private void writeObject(Object o) throws IOException {
if (o instanceof Text) {
Text to = (Text) o;
out.write(to.getBytes(), 0, to.getLength());//这里也需要修改
} else {
out.write(o.toString().getBytes(utf8));
}
}
…
}
可以看出hadoop默认的输出写死为utf-8,因此如果decode中文正确,那么将Linux客户端的character设为utf-8是可以看到中文的。因为hadoop用utf-8的格式输出了中文。
因为大多数数据库是用gbk来定义字段的,如果想让hadoop用gbk格式输出中文以兼容数据库怎么办?
我们可以定义一个新的类:
public class GbkOutputFormat<K, V> extends FileOutputFormat<K, V> {
protected static class LineRecordWriter<K, V>
implements RecordWriter<K, V> {
//写成gbk即可
private static final String gbk = “gbk”;
private static final byte[] newline;
static {
try {
newline = “\n”.getBytes(gbk);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + gbk + ” encoding”);
}
}
…
public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
this.out = out;
try {
this.keyValueSeparator = keyValueSeparator.getBytes(gbk);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + gbk + ” encoding”);
}
}
…
private void writeObject(Object o) throws IOException {
if (o instanceof Text) {
// Text to = (Text) o;
// out.write(to.getBytes(), 0, to.getLength());
// } else {
out.write(o.toString().getBytes(gbk));
}
}
…
}
然后在mapreduce代码中加入conf1.setOutputFormat(GbkOutputFormat.class)
即可以gbk格式输出中文。
2 关于计算过程中的压缩和效率的对比问题
之前曾经介绍过对输入文件采用压缩可以提高部分计算效率。现在作更进一步的说明。
为什么压缩会提高计算速度?这是因为mapreduce计算会将数据文件分散拷贝到所有datanode上,压缩可以减少数据浪费在带宽上的时间,当这些时间大于压缩/解压缩本身的时间时,计算速度就会提高了。
hadoop的压缩除了将输入文件进行压缩外,hadoop本身还可以在计算过程中将map输出以及将reduce输出进行压缩。这种计算当中的压缩又有什么样的效果呢?
测试环境:35台节点的hadoop cluster,单机2 CPU,8 core,8G内存,redhat 2.6.9, 其中namenode和second namenode各一台,namenode和second namenode不作datanode
输入文件大小为2.5G不压缩,records约为3600万条。mapreduce程序分为两个job:
job1:map将record按user字段作key拆分,reduce中作外连接。这样最后reduce输出为87亿records,大小540G
job2:map读入这87亿条数据并输出,reduce进行简单统计,最后的records为2.5亿条,大小16G
计算耗时54min
仅对第二个阶段的map作压缩(第一个阶段的map输出并不大,没有压缩的必要),测试结果:计算耗时39min
可见时间上节约了15min,注意以下参数的不同。
不压缩时:
Local bytes read=1923047905109
Local bytes written=1685607947227
压缩时:
Local bytes read=770579526349
Local bytes written=245469534966
本地读写的的数量大大降低了
至于对reduce输出的压缩,很遗憾经过测试基本没有提高速度的效果。可能是因为第一个job的输出大多数是在本地机上进行map,不经过网络传输的原因。
附:对map输出进行压缩,只需要添加jobConf.setMapOutputCompressorClass(DefaultCodec.class)
3 关于reduce的数量设置问题
reduce数量究竟多少是适合的。目前测试认为reduce数量约等于cluster中datanode的总cores的一半比较合适,比如cluster中有32台datanode,每台8 core,那么reduce设置为128速度最快。因为每台机器8 core,4个作map,4个作reduce计算,正好合适。
附小测试:对同一个程序
reduce num=32,reduce time = 6 min
reduce num=128, reduce time = 2 min
reduce num=320, reduce time = 5min
1 中文问题
从url中解析出中文,但hadoop中打印出来仍是乱码?我们曾经以为hadoop是不支持中文的,后来经过查看源代码,发现hadoop仅仅是不支持以gbk格式输出中文而己。
这是TextOutputFormat.class中的代码,hadoop默认的输出都是继承自FileOutputFormat来的,FileOutputFormat的两个子类一个是基于二进制流的输出,一个就是基于文本的输出TextOutputFormat。
public class TextOutputFormat<K, V> extends FileOutputFormat<K, V> {
protected static class LineRecordWriter<K, V>
implements RecordWriter<K, V> {
private static final String utf8 = “UTF-8″;//这里被写死成了utf-8
private static final byte[] newline;
static {
try {
newline = “\n”.getBytes(utf8);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + utf8 + ” encoding”);
}
}
…
public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
this.out = out;
try {
this.keyValueSeparator = keyValueSeparator.getBytes(utf8);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + utf8 + ” encoding”);
}
}
…
private void writeObject(Object o) throws IOException {
if (o instanceof Text) {
Text to = (Text) o;
out.write(to.getBytes(), 0, to.getLength());//这里也需要修改
} else {
out.write(o.toString().getBytes(utf8));
}
}
…
}
可以看出hadoop默认的输出写死为utf-8,因此如果decode中文正确,那么将Linux客户端的character设为utf-8是可以看到中文的。因为hadoop用utf-8的格式输出了中文。
因为大多数数据库是用gbk来定义字段的,如果想让hadoop用gbk格式输出中文以兼容数据库怎么办?
我们可以定义一个新的类:
public class GbkOutputFormat<K, V> extends FileOutputFormat<K, V> {
protected static class LineRecordWriter<K, V>
implements RecordWriter<K, V> {
//写成gbk即可
private static final String gbk = “gbk”;
private static final byte[] newline;
static {
try {
newline = “\n”.getBytes(gbk);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + gbk + ” encoding”);
}
}
…
public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
this.out = out;
try {
this.keyValueSeparator = keyValueSeparator.getBytes(gbk);
} catch (UnsupportedEncodingException uee) {
throw new IllegalArgumentException(”can’t find ” + gbk + ” encoding”);
}
}
…
private void writeObject(Object o) throws IOException {
if (o instanceof Text) {
// Text to = (Text) o;
// out.write(to.getBytes(), 0, to.getLength());
// } else {
out.write(o.toString().getBytes(gbk));
}
}
…
}
然后在mapreduce代码中加入conf1.setOutputFormat(GbkOutputFormat.class)
即可以gbk格式输出中文。
2 关于计算过程中的压缩和效率的对比问题
之前曾经介绍过对输入文件采用压缩可以提高部分计算效率。现在作更进一步的说明。
为什么压缩会提高计算速度?这是因为mapreduce计算会将数据文件分散拷贝到所有datanode上,压缩可以减少数据浪费在带宽上的时间,当这些时间大于压缩/解压缩本身的时间时,计算速度就会提高了。
hadoop的压缩除了将输入文件进行压缩外,hadoop本身还可以在计算过程中将map输出以及将reduce输出进行压缩。这种计算当中的压缩又有什么样的效果呢?
测试环境:35台节点的hadoop cluster,单机2 CPU,8 core,8G内存,redhat 2.6.9, 其中namenode和second namenode各一台,namenode和second namenode不作datanode
输入文件大小为2.5G不压缩,records约为3600万条。mapreduce程序分为两个job:
job1:map将record按user字段作key拆分,reduce中作外连接。这样最后reduce输出为87亿records,大小540G
job2:map读入这87亿条数据并输出,reduce进行简单统计,最后的records为2.5亿条,大小16G
计算耗时54min
仅对第二个阶段的map作压缩(第一个阶段的map输出并不大,没有压缩的必要),测试结果:计算耗时39min
可见时间上节约了15min,注意以下参数的不同。
不压缩时:
Local bytes read=1923047905109
Local bytes written=1685607947227
压缩时:
Local bytes read=770579526349
Local bytes written=245469534966
本地读写的的数量大大降低了
至于对reduce输出的压缩,很遗憾经过测试基本没有提高速度的效果。可能是因为第一个job的输出大多数是在本地机上进行map,不经过网络传输的原因。
附:对map输出进行压缩,只需要添加jobConf.setMapOutputCompressorClass(DefaultCodec.class)
3 关于reduce的数量设置问题
reduce数量究竟多少是适合的。目前测试认为reduce数量约等于cluster中datanode的总cores的一半比较合适,比如cluster中有32台datanode,每台8 core,那么reduce设置为128速度最快。因为每台机器8 core,4个作map,4个作reduce计算,正好合适。
附小测试:对同一个程序
reduce num=32,reduce time = 6 min
reduce num=128, reduce time = 2 min
reduce num=320, reduce time = 5min
发表评论
-
hadoop状态分析系统chukwa(转)
2012-03-21 15:23 1084Apache 的开源项目 hadoop ... -
sqoop could not find any valid local directory 异常解决
2011-09-07 15:10 2559在没有更改任何配置的情况下sqoop突然报警:org.apac ... -
Hadoop 数据类型与文件结构剖析 Sequence, Map, Set, Array, BloomMap Files
2011-04-24 15:06 1073今天要推荐的一篇文章 ... -
百度Hadoop分布式系统揭秘:4000节点集群
2011-04-24 14:54 1155在 NoSQL 方面,之前了解到百度对 Hadoop 和 ... -
ERROR org.apache.hadoop.hdfs.server.namenode.NameNode: java.lang.NumberFormatExc
2011-04-19 19:20 2225namenode莫名奇妙的启动不了,看log: 2011-0 ... -
zookeeper安装
2011-04-01 16:27 1074前提是已经安装好HADOOP ... -
sqoop应用错误记录
2011-04-01 16:26 875Connection refused 解决 ... -
Hadoop常见问题及解决办法(2)
2011-03-16 15:23 14721:Shuffle Error: Exceeded MA ... -
Hadoop集群优化手记
2011-03-16 15:21 1277<property> <name> ... -
Sqoop
2011-03-16 15:16 4354Sqoop是什么? 它是一个工具,一个在Hadoop和关 ... -
海量数据处理相关资料
2011-03-01 18:16 902逖靖寒的世界 :http://gpcuster.cn ... -
Hadoop中常出现的错误以及解决方法
2011-01-10 16:25 9631:Shuffle Error: Exceeded MAX_F ... -
直接使用HADOOP-RPC的编码实例
2010-09-06 17:13 13691、创建接口,该接口类在服务端和客户端都必须有。 publi ... -
mapreduce技术的开源c语言实现
2010-09-03 13:37 1266一、Stanford大学的Phoen ... -
hadoop c++ 扩展
2010-09-03 13:22 1597百度hadoop c++扩展介绍: http://zhaol ... -
hadoop安全
2010-09-03 10:23 946up and running with secure hado ... -
RedHat上安装hadoop+hbase问题记录
2010-08-27 14:16 1290安装在vshpere 虚拟机上,虚拟两台RedHat系统。 ... -
redhat 5.4部署单机伪分布Hadoop集群
2010-08-23 10:53 2461一、所需相关软件版本RedHat enterprise 5.4 ... -
Interpreting the Data:Parallel Analysis with Sawzall(3)
2010-07-12 15:56 113812 性能 虽然Sawzall是解释执行的,但是这不是影响性能 ... -
Interpreting the Data:Parallel Analysis with Sawzall(2)
2010-07-12 15:55 9037.Sawzall语言概览 作为一种查询语言,Sawzall是 ...
相关推荐
淘宝数据仓库环境作为中国电商巨头淘宝的核心组成部分,其发展历程、现状及未来规划,不仅体现了大数据时代下企业数据处理能力的提升,也展示了Oracle RAC在大规模数据仓库建设中的优势与挑战。以下是对淘宝数据仓库...
总的来说,淘宝的技术架构体现了以下几个关键知识点: 1. 分布式计算和存储:利用Hadoop等工具处理大规模数据。 2. 内容分发网络(CDN):提升用户体验,降低网络延迟。 3. 实时搜索引擎:处理大量商品数据,提供快速...
2. **Hadoop在eBay的应用:**详细探讨了大数据处理框架Hadoop在eBay中的具体应用场景和技术细节。Hadoop的强大数据处理能力帮助eBay更好地分析用户行为,提供个性化服务。 3. **NoSQL数据库的应用:**随着非关系型...
SOH-SVM算法:斑点鬣狗优化技术对支持向量机的改进与解析,优化算法助力机器学习:SOH-SVM改进及源码解析与参考,SOH-SVM:斑点鬣狗优化算法改进支持向量机:SOH-SVM。 代码有注释,附源码和参考文献,便于新手理解,~ ,SOH-SVM; 斑点鬣狗优化算法; 代码注释; 源码; 参考文献,SOH-SVM算法优化:附详解代码与参考
美赛教程&建模&数据分析&案例分析
GESPC++3级大纲
电动汽车充电负荷预测:基于出行链分析与OD矩阵的蒙特卡洛模拟研究,电动汽车充电负荷预测:基于出行链分析与OD矩阵的蒙特卡洛模拟方法,电动汽车充电负荷预测,出行链,OD矩阵,蒙特卡洛模拟 ,电动汽车充电负荷预测; 出行链; OD矩阵; 蒙特卡洛模拟,基于出行链的电动汽车充电负荷预测研究:蒙特卡洛模拟与OD矩阵分析
柯尼卡美能达Konica Minolta bizhub 205i 驱动
内容概要:本文全面介绍使用示波器进行一系列电学实验和项目的内容。从基础实验,如示波器的操作入门和常见波形的测量,再到进阶部分,比如电路故障排除与复杂项目设计,旨在帮助学生掌握示波器的各项技能。文中不仅提供了详尽的操作流程指导,还包括针对每个阶段的学习目标设定、预期成果评估和所需注意事项。最终通过对示波器的深入理解和熟练运用,在实际应用场景(如构造简单设备或是进行音频处理)达到创新解决问题的目的。 适用人群:面向有志于深入理解电工仪器及其应用的学生或者技术人员,尤其是刚开始接触或正在强化自己这方面能力的学习者。 使用场景及目标:①作为培训材料支持初学者快速上手专业级电工测试设备—示波器;②用于教学环节辅助讲解电学概念以及实际操作技巧;③鼓励用户参与更高层次的DIY工程任务从而培养解决问题的能力.
标题中的“ntc热敏电阻 MF52AT 10K 3950精度1%STM32采集带数字滤波”表明我们要讨论的是一个使用STM32微控制器进行数据采集的系统,该系统中包含NTC热敏电阻MF52AT作为温度传感器。NTC热敏电阻是一种负温度系数的电阻器,其阻值随温度升高而降低。MF52AT型号的热敏电阻具有10K欧姆的标称电阻和3950的B值,表示在特定温度下(通常为25℃)的阻值和温度特性曲线。精度1%意味着该电阻的阻值有1%的允许误差,这对于温度测量应用来说是相当高的精度。 描述中提到的“MF52AT热敏电阻STM32数据采集2路”,暗示我们有两个这样的热敏电阻连接到STM32微控制器的模拟输入端口,用于采集温度数据。STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于各种嵌入式系统中,包括温度监测等应用。由于STM32内部集成了多个ADC(模拟数字转换器),因此它可以同时处理多路模拟输入信号。 "带滤波,项目中实际运用,温差范围在±0.5度",这表明在实际应用中,数据采集系统采用了某种数字滤波技术来提高信号质量,可能是低通滤波、滑动平均滤波或更复杂的数字信号处理算法。
SSM框架整合是Java开发中常见的技术栈,包括Spring、SpringMVC和Mybatis三个核心组件。这个压缩包提供了一个已经验证过的整合示例,帮助开发者理解和实践这三大框架的协同工作。 Spring框架是Java企业级应用的基石,它提供了一种依赖注入(Dependency Injection,DI)的方式,使得对象之间的依赖关系得以解耦,便于管理和服务。Spring还提供了AOP(面向切面编程)功能,用于实现如日志记录、事务管理等跨切面关注点的处理。 SpringMVC是Spring框架的一部分,专门用于构建Web应用程序。它采用了模型-视图-控制器(Model-View-Controller,MVC)设计模式,将业务逻辑、数据展示和用户交互分离,提高了代码的可维护性和可扩展性。在SpringMVC中,请求被DispatcherServlet接收,然后分发到相应的处理器,处理器执行业务逻辑后返回结果,最后由视图解析并展示给用户。 Mybatis是一个优秀的持久层框架,它简化了JDBC的繁琐操作,支持SQL语句的动态编写,使得开发者可以直接使用SQL来操作数据库,同时还能保持数
分割资源UE5.3.z25
Matlab 2021及以上版本:电气工程与自动化仿真实践——电力电子变换器微网建模与仿真研究,涵盖Boost、Buck整流逆变器闭环控制及光伏蓄电池电路等多重电气仿真,基于Matlab 2021及以上的电气工程与自动化仿真研究:电力电子变换器微网建模与Boost、Buck整流逆变器闭环控制及光伏蓄电池电路等多电气仿真分析,电气工程及其自动化仿真 Matlab simulink 电力电子变器微网建模仿真 仅限matlab版本2021及以上 Boost,Buck,整流逆变器闭环控制 光伏蓄电池电路等多种电气仿真 ,电气工程; Matlab simulink; 电力电子变换器; 微网建模仿真; Boost; Buck; 整流逆变器; 闭环控制; 光伏蓄电池电路; 电气仿真,Matlab 2021版电气工程自动化仿真研究:微网建模与控制策略
移动机器人路径规划,python入门程序
《DeepSeek从入门到精通》是清华大学推出的一套深度学习学习资源,内容涵盖基础知识、实用技巧和前沿应用,适合不同水平的学习者。通过系统化的学习路径,帮助你在深度学习领域快速成长。无论你是初学者还是
考虑新能源消纳的火电机组深度调峰策略:建立成本模型与经济调度,实现风电全额消纳的优化方案,考虑新能源消纳的火电机组深度调峰策略与经济调度模型研究,考虑新能源消纳的火电机组深度调峰策略 摘要:本代码主要做的是考虑新能源消纳的火电机组深度调峰策略,以常规调峰、不投油深度调峰、投油深度调峰三个阶段,建立了火电机组深度调峰成本模型,并以风电全额消纳为前提,建立了经济调度模型。 约束条件主要考虑煤燃烧约束、系统旋转备用功率约束、启停、爬坡、储热约束等等。 复现结果非常良好,结果图展示如下: 1、代码非常精品,有注释方便理解; ,核心关键词:新能源消纳;火电机组深度调峰策略;常规调峰;不投油深度调峰;投油深度调峰;成本模型;经济调度模型;煤燃烧约束;系统旋转备用功率约束;启停约束;爬坡约束;储热约束。,新能源优化调度策略:火电机组深度调峰及经济调度研究
"数字设计原理与实践" 数字设计是计算机科学和电子工程两个领域的交叉点,涉及到数字电路的设计和实现。本书籍《数字设计-原理与实践》旨在为读者提供一个系统的数字设计指南,从基本原理到实际应用,涵盖了数字设计的方方面面。 1. 数字设计的定义和目标 数字设计是指使用数字电路和系统来实现特定的功能目标的设计过程。在这个过程中,设计师需要考虑到各种因素,如电路的可靠性、功耗、面积等,以确保设计的数字电路能够满足实际应用的需求。 2. 数字设计的基本原理 数字设计的基本原理包括数字电路的基本元件,如逻辑门、 Flip-Flop、计数器、加法器等,以及数字电路的设计方法,如Combinational Logic、Sequential Logic和 Finite State Machine等。 3. 数字设计的设计流程 数字设计的设计流程通常包括以下几个步骤: * 需求分析:确定设计的目标和约束条件。 *电路设计:根据需求设计数字电路。 * 仿真验证:使用软件工具对设计的数字电路进行仿真和验证。 * 实现和测试:将设计的数字电路实现并进行测试。 4. 数字设计在实际应用中的应用 数字设计在实际应用中
基于Simulink仿真的直流电机双闭环控制系统设计与分析:转速电流双闭环PWM控制策略及7天报告研究,基于Simulink仿真的直流电机双闭环控制系统分析与设计报告:转速电流双闭环PWM控制策略的7天实践,直流电机双闭环控制系统仿真 simulink仿真 7d 转速电流双闭环 PWM 含有报告哈 ,直流电机; 双闭环控制系统; Simulink仿真; 7d; 转速电流双闭环; PWM; 报告,7天完成双闭环控制系统仿真报告:直流电机转速电流PWM管理与Simulink仿真研究
三目标微电网能量调度优化:经济、环境友好与高效能分配的协同策略研究,微粒群算法在三目标微电网能量调度中的应用:经济、环境友好与优化调度的综合研究,微电网 能量调度 三目标微网调度, 经济调度 环境友好调度 优化调度 微电网能量调度问题的求解 问题描述: - 微电网:包含多个能量源,包括DG(分布式发电设备,如太阳能光伏板、微型燃气轮机等)、MT(燃油发电机)和FC(燃料电池)。 - 目标:通过合理分配各种能源的发电功率,满足负荷需求,同时使得微电网的发电成本最小化。 解决方法: 微粒群算法(Particle Swarm Optimization, PSO): - 步骤: - 初始化微粒群:根据给定的微电网问题约束,随机生成一定数量的微粒(粒子),每个粒子代表一种发电方案,包含DG、MT和FC的发电功率分配情况。 - 适应度函数:对每个粒子,计算其对应的发电成本,作为其适应度值。 - 更新速度和位置:根据当前适应度值和历史最优适应度值,通过PSO算法的公式,更新每个粒子的速度和位置,以寻找更优的发电功率分配。 - 约束处理:根据问题约束条件,
《无感滑膜技术:Microchip1078代码移植至ST芯片的实践指南》——新手必备的反正切算法与电子资料整合方案,《无感滑膜技术:Microchip1078代码移植至ST芯片的实践指南》——新手必备的反正切算法与电子资料全解析,无感滑膜,反正切,microchip1078代码移植到st芯片上,新手学习必备。 可以提供提供相应文档和keil工程,电子资料, ,无感滑膜; 反正切; microchip1078代码移植; ST芯片; 新手学习; 文档; Keil工程; 电子资料,无感滑膜算法移植至ST芯片的Microchip1078代码迁移指南