-Xbootclasspath:bootclasspath
让jvm从指定路径(可以是分号分隔的目录、jar、或者zip)中加载bootclass,用来替换jdk的rt.jar;若非必要,一般不会用到;
-Xbootclasspath/a:path
将指定路径的所有文件追加到默认bootstrap路径中;
-Xbootclasspath/p:path
让jvm优先于bootstrap默认路径加载指定路径的所有文件;
一,ClassLoader的大体过程
如图:
详解:
虚拟机一启动,会先做一些初始化的动作。一旦初始化动作完成之后,就会产生第一个类别加载器,即所谓的Bootstrap Loader,Bootstrap Loader 是由C++ 所撰写而成,这个Bootstrap Loader所做的初始工作中,除了也做一些基本的初始化动作之外,最重要的就是加载定义在sun.misc 命名空间底下的Launcher.java 之中的ExtClassLoader( 因为是inner class ,所以编译之后会变成Launcher$ExtClassLoader.class) ,并设定其Parent 为null,代表其父加载器为Bootstrap Loader 。然后Bootstrap Loader ,再要求加载定义于sun.misc 命名空间底下的Launcher.java 之中的AppClassLoader( 因为是inner class,所以编译之后会变成Launcher$AppClassLoader.class) ,并设定其Parent 为之前产生的ExtClassLoader 实例。
由以上可以看出,classLoader是由下向上查找,上层的不能向下查找。
二,ClassLoader中类的关系
如图:
详解:
AppClassLoader 和ExtClassLoader 都是URLClassLoader 的子类别。由于它们都是URLClassLoader 的子类别,所以它们也应该有URL 作为搜寻类别档的参考,由原始码中我们可以得知,AppClassLoader 所参考的URL 是从系统参java.class.path 取出的字符串所决定,而java.class.path 则是由我们在执行java.exe 时,利用 –cp 或-classpath 或CLASSPATH 环境变量所决定。
ClassLoader的loadClass代码:
protected synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException { // First, check if the class has already been loaded //类是否被加载过 Class c = findLoadedClass(name); if (c == null) { try { if (parent != null) { //到parentclassloader中去查找(像这个parent还有parent递归方式进行查找) c = parent.loadClass(name, false); } else { //启动类加载器进行加载 c = findBootstrapClass0(name); } } catch (ClassNotFoundException e) { // If still not found, then invoke findClass in order // to find the class. //当一直都没有找到时,启动当前类的findClass进行查找 //这个通常也是我们扩展的地方 c = findClass(name); } } if (resolve) { resolveClass(c); } return c; }
三,分析及证明:
可以用最底层的ClassLoader得到某一个类(Test)时,Test.class.getClassLoader()就可知当前类在哪一个层次的ClassLoader下被加载
1,BootStrapClassLoader
Class clazz=Class.forName("java.lang.Object"); System.out.println(clazz.getClassLoader()); //输出为null,因为bootstrap在java中不是类,而是由c++编写的 URL[] urls=sun.misc.Launcher.getBootstrapClassPath().getURLs(); for (int i = 0; i < urls.length; i++) { System.out.println(urls[i].getFile()); }//用这个进行查找bootstrap所加载的是哪些jar包
2,ExtClassLoader
clazz = Class.forName("sun.net.spi.nameservice.dns.DNSNameService"); clazzLoader = clazz.getClassLoader(); System.out.println(" sun.net.spi.nameservice.dns.DNSNameService's loader is " + clazzLoader); //在些可以说明ExtClassLoader所加载的类
3,AppClassLoader
当前工程中class与lib都是用此Loader加载
可以通过ClassLoader.getSystemClassLoader()可以获取到AppClassLoader的
4,DefineClassLoader
可以继承URLClassLoader或ClassLoader
当继承ClassLoader重写findClass()方法,parent会相应是AppClassLoader-->ExtClassLoader-->BootStrapClassLoader
URLClassLoader可以直接设置url即可
问题:
由于自己自定义了一个DefineClassLoader替代了加载ant的ClassLoader,另外添加自己jar包,
但是在执行ant编译时,要执行tools.jar里的javac类,在执行javac这个类时,是处在AppClassLoader
下,找不到我添加的DefineClassLoader的jar包
------------------------------------------------
其他一些相应的操作(参考)
在预设情况下,AppClassLoader的搜寻路径为”.”( 目前所在目录),如果使用-classpath 选项(与-cp 等效),就可以改变AppClassLoader 的搜寻路径,如果没有指定-classpath 选项,就会搜寻环境变量CLASSPATH 。如果同时有CLASSPATH 的环境设定与-classpath 选项,则以-classpath 选项的内容为主,CLASSPATH 的环境设定与-classpath 选项两者的内容不会有加成的效果。至于ExtClassLoader 也有相同的情形,不过其搜寻路径是参考系统参数java.ext.dirsBootstrap Loader ,我们可以经由查询由系统参数sun.boot.class.path 得知Bootstrap Loader 用来搜寻类别的路径java -Dsun.boot.class.path=请回头看到java.class.path 与sun.boot.class.path,也就是说,AppClassLoader 与Bootstrap Loader 会搜寻它们所指定的位置(或JAR 文件),如果找不到就找不到了,AppClassLoader 与Bootstrap Loader 不会递归式地搜寻这些位置下的其他路径或其他没有被指定的JAR 文件。反观ExtClassLoader,所参考的系统参数是java.ext.dirs,意思是说,他会搜寻底下的所有JAR 文件以及classes 目录,作为其搜寻路径(所以您会发现上面我们在测试的时候,如果加入-Dsun.boot.class.path=c:windows 选项时,程序的起始速度会慢了些,这是因为c:windows 目录下的文件很多,必须花额外的时间来列举JAR 文件)。
在命令行下参数时,使用–classpath / -cp / 环境变量CLASSPATH 来更改AppClassLoader 的搜寻路径,或者用 –Djava.ext.dirs 来改变ExtClassLoader的搜寻目录,两者都是有意义的。可是用–Dsun.boot.class.path 来改变Bootstrap Loader 的搜寻路径是无效。这是因为AppClassLoader与ExtClassLoader 都是各自参考这两个系统参数的内容而建立,当您在命令行下变更这两个系统参数之后,AppClassLoader 与ExtClassLoader在建立实例的时候会参考这两个系统参数,因而改变了它们搜寻类别文件的路径; 而系统参数sun.boot.class.path 则是默认与Bootstrap Loader 的搜寻路径相同,就算您更改该系统参与,与BootstrapLoader 完全无关,AppClassLoader 与ExtClassLoader 在整个虚拟机之中只会存有一份,一旦建立了,其内部所参考的搜寻路径将不再改变,也就是说,即使我们在程序里利用System.setProperty() 来改变系统参数的内容,仍然无法更动AppClassLoader 与ExtClassLoader 的搜寻路径。因此,执行时期动态更改搜寻路径的设定是不可能的事情。
参考网址:http://blog.sina.com.cn/s/blog_4efddaed01008ypj.html
http://syue.com/Software/JAVA/15709.html
相关推荐
内容概要:本文主要探讨了SNS单模无芯光纤的仿真分析及其在通信和传感领域的应用潜力。首先介绍了模间干涉仿真的重要性,利用Rsoft beamprop模块模拟不同模式光在光纤中的传播情况,进而分析光纤的传输性能和模式特性。接着讨论了光纤传输特性的仿真,包括损耗、色散和模式耦合等参数的评估。随后,文章分析了光纤的结构特性,如折射率分布、包层和纤芯直径对性能的影响,并探讨了镀膜技术对光纤性能的提升作用。最后,进行了变形仿真分析,研究外部因素导致的光纤变形对其性能的影响。通过这些分析,为优化光纤设计提供了理论依据。 适合人群:从事光纤通信、光学工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要深入了解SNS单模无芯光纤特性和优化设计的研究项目,旨在提高光纤性能并拓展其应用场景。 其他说明:本文不仅提供了详细的仿真方法和技术细节,还对未来的发展方向进行了展望,强调了SNS单模无芯光纤在未来通信和传感领域的重要地位。
发那科USM通讯程序socket-set
嵌入式八股文面试题库资料知识宝典-WIFI.zip
源码与image
内容概要:本文详细探讨了物流行业中路径规划与车辆路径优化(VRP)的问题,特别是针对冷链物流、带时间窗的车辆路径优化(VRPTW)、考虑充电桩的车辆路径优化(EVRP)以及多配送中心情况下的路径优化。文中不仅介绍了遗传算法、蚁群算法、粒子群算法等多种优化算法的理论背景,还提供了完整的MATLAB代码及注释,帮助读者理解这些算法的具体实现。此外,文章还讨论了如何通过MATLAB处理大量数据和复杂计算,以得出最优的路径方案。 适合人群:从事物流行业的研究人员和技术人员,尤其是对路径优化感兴趣的开发者和工程师。 使用场景及目标:适用于需要优化车辆路径的企业和个人,旨在提高配送效率、降低成本、确保按时交付货物。通过学习本文提供的算法和代码,读者可以在实际工作中应用这些优化方法,提升物流系统的性能。 其他说明:为了更好地理解和应用这些算法,建议读者参考相关文献和教程进行深入学习。同时,实际应用中还需根据具体情况进行参数调整和优化。
嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_8.doc.zip
内容概要:本文介绍了基于灰狼优化算法(GWO)的城市路径规划优化问题(TSP),并通过Matlab实现了该算法。文章详细解释了GWO算法的工作原理,包括寻找猎物、围捕猎物和攻击猎物三个阶段,并提供了具体的代码示例。通过不断迭代优化路径,最终得到最优的城市路径规划方案。与传统TSP求解方法相比,GWO算法具有更好的全局搜索能力和较快的收敛速度,适用于复杂的城市环境。尽管如此,算法在面对大量城市节点时仍面临运算时间和参数设置的挑战。 适合人群:对路径规划、优化算法感兴趣的科研人员、学生以及从事交通规划的专业人士。 使用场景及目标:①研究和开发高效的路径规划算法;②优化城市交通系统,提升出行效率;③探索人工智能在交通领域的应用。 其他说明:文中提到的代码可以作为学习和研究的基础,但实际应用中需要根据具体情况调整算法参数和优化策略。
嵌入式八股文面试题库资料知识宝典-Intel3.zip
嵌入式八股文面试题库资料知识宝典-2019京东C++.zip
嵌入式八股文面试题库资料知识宝典-北京光桥科技有限公司面试题.zip
内容概要:本文详细探讨了十字形声子晶体的能带结构和传输特性。首先介绍了声子晶体作为新型周期性结构在物理学和工程学中的重要地位,特别是十字形声子晶体的独特结构特点。接着从散射体的形状、大小、排列周期等方面分析了其对能带结构的影响,并通过理论计算和仿真获得了能带图。随后讨论了十字形声子晶体的传输特性,即它对声波的调控能力,包括传播速度、模式和能量分布的变化。最后通过大量实验和仿真验证了理论分析的正确性,并得出结论指出散射体的材料、形状和排列方式对其性能有重大影响。 适合人群:从事物理学、材料科学、声学等相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解声子晶体尤其是十字形声子晶体能带与传输特性的科研工作者,旨在为相关领域的创新和发展提供理论支持和技术指导。 其他说明:文中还对未来的研究方向进行了展望,强调了声子晶体在未来多个领域的潜在应用价值。
嵌入式系统开发_USB主机控制器_Arduino兼容开源硬件_基于Mega32U4和MAX3421E芯片的USB设备扩展开发板_支持多种USB外设接入与控制的通用型嵌入式开发平台_
e2b8a-main.zip
少儿编程scratch项目源代码文件案例素材-火柴人跑酷(2).zip
内容概要:本文详细介绍了HarmonyOS分布式远程启动子系统,该系统作为HarmonyOS的重要组成部分,旨在打破设备间的界限,实现跨设备无缝启动、智能设备选择和数据同步与连续性等功能。通过分布式软总线和分布式数据管理技术,它能够快速、稳定地实现设备间的通信和数据同步,为用户提供便捷的操作体验。文章还探讨了该系统在智能家居、智能办公和教育等领域的应用场景,展示了其在提升效率和用户体验方面的巨大潜力。最后,文章展望了该系统的未来发展,强调其在技术优化和应用场景拓展上的无限可能性。 适合人群:对HarmonyOS及其分布式技术感兴趣的用户、开发者和行业从业者。 使用场景及目标:①理解HarmonyOS分布式远程启动子系统的工作原理和技术细节;②探索该系统在智能家居、智能办公和教育等领域的具体应用场景;③了解该系统为开发者提供的开发优势和实践要点。 其他说明:本文不仅介绍了HarmonyOS分布式远程启动子系统的核心技术和应用场景,还展望了其未来的发展方向。通过阅读本文,用户可以全面了解该系统如何通过技术创新提升设备间的协同能力和用户体验,为智能生活带来新的变革。
嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_1.zip
少儿编程scratch项目源代码文件案例素材-激光反弹.zip
内容概要:本文详细介绍了COMSOL相控阵检测技术在有机玻璃斜楔上放置16阵元进行工件内部缺陷检测的方法。首先阐述了相控阵检测技术的基本原理,特别是通过控制各阵元的激发时间和相位来实现声波的聚焦和扫描。接着,重点解析了横孔缺陷的反射接收波,解释了波的折射现象及其背后的物理原因。最后,通过实例展示了COMSOL模拟声波传播过程的成功应用,验证了该技术的有效性和准确性。 适合人群:从事固体力学、无损检测领域的研究人员和技术人员,尤其是对相控阵检测技术和COMSOL仿真感兴趣的读者。 使用场景及目标:适用于需要精确检测工件内部缺陷的研究和工业应用场景,旨在提高检测精度和效率,确保产品质量和安全。 其他说明:文中提到的声速匹配现象有助于理解波在不同介质间的传播特性,这对优化检测参数设置有重要意义。
少儿编程scratch项目源代码文件案例素材-极速奔跑者.zip
嵌入式八股文面试题库资料知识宝典-微软_interview.zip