`

Spring对Quartz的封装实现简单分析及使用注意事项

    博客分类:
  • java
阅读更多
前段时间在项目中一直使用正常的Quartz突然出现了任务漏跑的情况,由于我以前看过Quartz的内部实现,凭借记忆我觉得是由于Quartz的线程池的使用出现问题导致了故障的发生。为了搞清问题的真相,我又重新看了一下Quartz的代码,以下是我对Quartz的一些分析,欢迎各位大牛拍砖。

在看Spring的代码时发现Spring对Quartz封装过以后对Quartz的初始化过程还是比较复杂的,我对比较关键的几点提取出来画出了上面的时序图。大家可以结合代码看上面的时序图应该可以理解Quartz的初始化过程。图中的SpringContext只是用来代表Spring容器,我们在使用Quartz时没有对它进行特殊的配置,因此它各种参数都是默认的。特别是“org.quartz.threadPool.threadCount”这个参数Scheduler中线程池的大小也是使用了Spring的默认值10,这个默认值就有可能是造成我们的系统线上定时任务故障的原因,下面我再详细的解析一下。

QuartzScheduler是整个定时任务框架工作的核心类,上面的类图仅仅展现了QuartzScheduler中几个核心成员。QuartzSchedulerResources可以认为是存放一切配置以及通过配置初始化出来的一些资源的容器,其中包括了存储job定义的jobStore,JobStore可以有多种实现,我们使用的是默认的RAMJobStore;还有一个非常重要的对象就是ThreadPool,这个线程池管理着执行我们定义的Job所需的所有线程。这个线程池的大小配置就是通过我上面提到过的“org.quartz.threadPool.threadCount”进行配置的。QuartzScheduler另一个重要成员就是QuartzSchedulerThread,没有这个线程的话我们所有定义的任务都不会被触发执行,也就是说它是Quartz后台的“守护线程”,它不断的去查找合适的job并触发这些Job执行。下图展现了QuartzSchedulerThread的主要业务逻辑。

上图中有一处肯定引起了大家的注意,那就是判断可用线程数的阻塞方法。这个方法当线程池中可用的连接数小于1的时候会调用Object.wait()方法,让QuartzSchedulerThread线程等待直到线程池中有可用的线程以后才返回结果。这样的话如果遇到在某一时刻并发的任务比较多的情况下就极有可能导致有些任务没有按我们预先设定的时间进行执行。

下面再来看一下我对Quartz进行的一个测试:
1.在Spring配置文件中配置了13个job,每个Job实现代码都一样具体如下:
public class TestJob1 {
    protected int times=0;
    
    public void doJob2(){
       times++;
       System.out.println(this.getClass().getName()+" start job. times:"+times+" "+new Date());
       try {
           Thread.sleep(1000L*60L*3L);
       } catch (InterruptedException e) {
           // TODO Auto-generated catch block
           e.printStackTrace();
       }
       System.out.println(this.getClass().getName()+" end job. times:"+times);
    }
}

2.Spring配置中cronExpression如下:
  <bean id="testJob1" class="com.xxx.xxxx.test.order.TestJob1"/>
  <bean id="testJob1Trigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
       <property name="jobDetail">
           <bean class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
               <property name="concurrent" value="false"/>
                <property name="targetObject" ref="testJob1"/>
                <property name="targetMethod" value="doJob2"/>
           </bean>
       </property>
       <property name="cronExpression" value="0 0/1 * * * ? *"/>
    </bean>
    
      <bean id="testJob2" class="com.xxx.xxxx.test.order.TestJob2"/>
  <bean id="testJob2Trigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
       <property name="jobDetail">
           <bean class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
               <property name="concurrent" value="false"/>
                <property name="targetObject" ref="testJob2"/>
                <property name="targetMethod" value="doJob2"/>
           </bean>
       </property>
       <property name="cronExpression" value="0 0/1 * * * ? *"/>
    </bean>
   <!--这里省略job3-job11的配置,这些JOB的配置同job1,job2-->
   <bean id="testJob12" class="com.xxx.xxxx.test.order.TestJob12"/>
  <bean id="testJob12Trigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
       <property name="jobDetail">
           <bean class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
               <property name="concurrent" value="false"/>
                <property name="targetObject" ref="testJob12"/>
                <property name="targetMethod" value="doJob2"/>
           </bean>
       </property>
       <property name="cronExpression" value="30 0/1 * * * ? *"/>
    </bean>   
    
      <bean id="testJob13" class="com.xxx.xxxx.test.order.TestJob13"/>
  <bean id="testJob13Trigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
       <property name="jobDetail">
           <bean class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
               <property name="concurrent" value="false"/>
                <property name="targetObject" ref="testJob13"/>
                <property name="targetMethod" value="doJob2"/>
           </bean>
       </property>
       <property name="cronExpression" value="50 0/1 * * * ? *"/>

也就是说除了testJob12和testJob13是我们期望分别在每分钟的30秒、50秒被触发,其他的job都是每分钟的0秒时被触发
3.下面我们看一下Quartz的执行结果
com.xxx.xxxx.test.order.TestJob13 start job. times:1 Wed Jun 02 09:12:51 CST 2010
com.xxx.xxxx.test.order.TestJob10 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob11 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob1 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob2 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob3 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob4 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob5 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob6 start job. times:1 Wed Jun 02 09:13:00 CST 2010
com.xxx.xxxx.test.order.TestJob7 start job. times:1 Wed Jun 02 09:13:00 CST 2010

com.xxx.xxxx.test.order.TestJob13 end job. times:1
com.xxx.xxxx.test.order.TestJob12 start job. times:1 Wed Jun 02 09:15:51 CST 2010
com.xxx.xxxx.test.order.TestJob10 end job. times:1
com.xxx.xxxx.test.order.TestJob13 start job. times:2 Wed Jun 02 09:16:00 CST 2010

com.xxx.xxxx.test.order.TestJob11 end job. times:1
com.xxx.xxxx.test.order.TestJob1 end job. times:1
com.xxx.xxxx.test.order.TestJob3 end job. times:1
com.xxx.xxxx.test.order.TestJob2 end job. times:1
……

我们可以看到在红色区块里是Quartz第一次调度启动的所有JOB,我们可以看到这个时候只启动了10个JOB,job8,9,12因为线程池无可用线程没有被触发起来。
我们再看绿色区块由于job13第一次的任务执行结束使得线程池中有了空闲的线程,job12得以被触发但是这里请大家注意一下JOB12的开始时间09:15:51这已经不是我们说期望的每分钟的30秒那一刻开始执行。绿色区块的后面两条日志我们也可以看到由于Job10执行完成JOB13开始了第二次执行09:16:00但是Job13的触发时间也不是我们所期望的每分钟的50秒那一刻开始执行。
后面的日志我就不再解释从上面的日志我们基本上可以看出来,当Quartz得线程池在某一个时刻被占满的时候,后续的一些job无法保证在我们所期望的时间点被执行.
   通过这个测试得出了我们使用Quartz时需要注意的几点事项:
1. 同一个时刻,或者相隔较近的一段时间内不能配置超过Quartz线程池大小的任务数。有时候即使是在某时刻任务数配置的不多但是也要关心一下在它的前面是否有大量的耗时的任务,这样同样会有可能导致你的任务不在你期望的时间点被执行。
2. 在你的定时任务里不要依赖定时钟的启动时间来做一些操作,比如根据当前时间取一些数据的操作,如果有类似这样的操作当定时钟没有在你期望的时间点被触发的时候极有可能造成数据遗漏之类的问题。
3
0
分享到:
评论
2 楼 wangyao520 2011-07-19  
不错,很强大.
1 楼 sea0108 2010-12-22  
写的非常好。

相关推荐

    spring mvc quartz 动态设置时间

    - `schedulerFactory`:`SchedulerFactoryBean`是Spring对Quartz调度器的封装,它负责管理和初始化调度器,并关联触发器和任务。 2. **Web应用配置**: - 在`web.xml`中,通过`contextConfigLocation`参数指定了...

    Introduction to Quartz(2)

    10. **注意事项**: - 在生产环境中,考虑到性能和稳定性,需要合理配置Quartz的线程池大小,避免资源浪费或调度冲突。 总之,Quartz是一个强大且灵活的作业调度工具,它为Java开发者提供了丰富的功能来实现复杂的...

    java写定时任务,定时任务、定时器详细示例

    Java中的定时任务与定时器是实现自动化操作的关键技术之一,特别是在...然而,在对实时性和精度有更高要求的应用场景下,可能需要考虑使用更高级的定时框架或服务,如Quartz Scheduler或Spring Boot的定时任务支持。

    Java工程师面试宝典

    - **图片上传注意事项**:文件大小限制、格式验证等。 - **商品规格设计**:考虑商品属性、价格等信息的组织方式。 - **跨系统调用实现**:RESTful API、RPC 等。 - **CMS系统设计**:内容管理系统的架构和功能。 - ...

    避开10大常见坑:DeepSeekAPI集成中的错误处理与调试指南.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    前端分析-2023071100789

    前端分析-2023071100789

    基于kinect的3D人体建模C++完整代码.cpp

    基于kinect的3D人体建模C++完整代码.cpp

    搞机工具箱10.1.0.7z

    搞机工具箱10.1.0.7z

    GRU+informer时间序列预测(Python完整源码和数据)

    GRU+informer时间序列预测(Python完整源码和数据),python代码,pytorch架构,适合各种时间序列直接预测。 适合小白,注释清楚,都能看懂。功能如下: 代码基于数据集划分为训练集测试集。 1.多变量输入,单变量输出/可改多输出 2.多时间步预测,单时间步预测 3.评价指标:R方 RMSE MAE MAPE,对比图 4.数据从excel/csv文件中读取,直接替换即可。 5.结果保存到文本中,可以后续处理。 代码带数据,注释清晰,直接一键运行即可,适合新手小白。

    性价比革命:DeepSeekAPI成本仅为GPT-4的3%的技术揭秘.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    基于ANSYS LSDyna的DEM-SPH-FEM耦合模拟滑坡入水动态行为研究,基于ANSYS LSDyna的DEM-SPH-FEM耦合的滑坡入水模拟分析研究,基于ansys lsdyna的滑坡入水

    基于ANSYS LSDyna的DEM-SPH-FEM耦合模拟滑坡入水动态行为研究,基于ANSYS LSDyna的DEM-SPH-FEM耦合的滑坡入水模拟分析研究,基于ansys lsdyna的滑坡入水模拟dem-sph-fem耦合 ,基于ANSYS LSDyna; 滑坡入水模拟; DEM-SPH-FEM 耦合,基于DEM-SPH-FEM耦合的ANSYS LSDyna滑坡入水模拟

    auto_gptq-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

    auto_gptq-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

    复件 复件 建设工程可行性研究合同[示范文本].doc

    复件 复件 建设工程可行性研究合同[示范文本].doc

    13考试真题最近的t64.txt

    13考试真题最近的t64.txt

    Microsoft Visual C++ 2005 SP1 Redistributable PackageX86

    好用我已经解决报错问题

    嵌入式开发入门:用C语言点亮LED灯的全栈开发指南.pdf

    # 踏入C语言的奇妙编程世界 在编程的广阔宇宙中,C语言宛如一颗璀璨恒星,以其独特魅力与强大功能,始终占据着不可替代的地位。无论你是编程小白,还是有一定基础想进一步提升的开发者,C语言都值得深入探索。 C语言的高效性与可移植性令人瞩目。它能直接操控硬件,执行速度快,是系统软件、嵌入式开发的首选。同时,代码可在不同操作系统和硬件平台间轻松移植,极大节省开发成本。 学习C语言,能让你深入理解计算机底层原理,培养逻辑思维和问题解决能力。掌握C语言后,再学习其他编程语言也会事半功倍。 现在,让我们一起开启C语言学习之旅。这里有丰富教程、实用案例、详细代码解析,助你逐步掌握C语言核心知识和编程技巧。别再犹豫,加入我们,在C语言的海洋中尽情遨游,挖掘无限可能,为未来的编程之路打下坚实基础!

    auto_gptq-0.4.2-cp38-cp38-win_amd64.whl

    auto_gptq-0.4.2-cp38-cp38-win_amd64.whl

    自动立体库设计方案.pptx

    自动立体库设计方案.pptx

    手把手教你用C语言实现贪吃蛇游戏:从算法设计到图形渲染.pdf

    # 踏入C语言的奇妙编程世界 在编程的广阔宇宙中,C语言宛如一颗璀璨恒星,以其独特魅力与强大功能,始终占据着不可替代的地位。无论你是编程小白,还是有一定基础想进一步提升的开发者,C语言都值得深入探索。 C语言的高效性与可移植性令人瞩目。它能直接操控硬件,执行速度快,是系统软件、嵌入式开发的首选。同时,代码可在不同操作系统和硬件平台间轻松移植,极大节省开发成本。 学习C语言,能让你深入理解计算机底层原理,培养逻辑思维和问题解决能力。掌握C语言后,再学习其他编程语言也会事半功倍。 现在,让我们一起开启C语言学习之旅。这里有丰富教程、实用案例、详细代码解析,助你逐步掌握C语言核心知识和编程技巧。别再犹豫,加入我们,在C语言的海洋中尽情遨游,挖掘无限可能,为未来的编程之路打下坚实基础!

    性能对决:DeepSeek-V3与ChatGPTAPI在数学推理场景的基准测试.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

Global site tag (gtag.js) - Google Analytics