`
zhaoqj518
  • 浏览: 33512 次
  • 性别: Icon_minigender_1
  • 来自: 北京
最近访客 更多访客>>
社区版块
存档分类
最新评论

[yc]详解link

阅读更多
原文摘自:http://www.cppblog.com/shifan3/archive/2007/01/05/17325.html
 
 
 

详解link
有些人写C/C++(以下假定为C++)程序,对unresolved external link或者duplicated external simbol的错误信息不知所措(因为这样的错误信息不能定位到某一行)。或者对语言的一些部分不知道为什么要(或者不要)这样那样设计。了解本文之后,或许会有一些答案。
    首先看看我们是如何写一个程序的。如果你在使用某种IDE(Visual Studio,Elicpse,Dev C++等),你可能不会发现程序是如何组织起来的(很多人因此而反对初学者使用IDE)。因为使用IDE,你所做的事情,就是在一个项目里新建一系列的.cpp和.h文件,编写好之后在菜单里点击“编译”,就万事大吉了。但其实以前,程序员写程序不是这样的。他们首先要打开一个编辑器,像编写文本文件一样的写好代码,然后在命令行下敲
    cc 1.cpp -o 1.o
    cc 2.cpp -o 2.o
    cc 3.cpp -o 3.o
这里cc代表某个C/C++编译器,后面紧跟着要编译的cpp文件,并且以-o指定要输出的文件(请原谅我没有使用任何一个流行编译器作为例子)。这样当前目录下就会出现:
    1.o 2.o 3.o
最后,程序员还要键入
    link 1.o 2.o 3.o -o a.out
来生成最终的可执行文件a.out。现在的IDE,其实也同样遵照着这个步骤,只不过把一切都自动化了。
    让我们来分析上面的过程,看看能发现什么。
    首先,对源代码进行编译,是对各个cpp文件单独进行的。对于每一次编译,如果排除在cpp文件里include别的cpp文件的情况(这是C++代码编写中极其错误的写法),那么编译器仅仅知道当前要编译的那一个cpp文件,对其他的cpp文件的存在完全不知情。
    其次,每个cpp文件编译后,产生的.o文件,要被一个链接器(link)所读入,才能最终生成可执行文件。
    好了,有了这些感性认识之后,让我们来看看C/C++程序是如何组织的。
    
    首先要知道一些概念:
    编译:编译器对源代码进行编译,是将以文本形式存在的源代码翻译为机器语言形式的目标文件的过程。
    编译单元:对于C++来说,每一个cpp文件就是一个编译单元。从之前的编译过程的演示可以看出,各个编译单元之间是互相不可知的。
    目标文件:由编译所生成的文件,以机器码的形式包含了编译单元里所有的代码和数据,以及一些其他的信息。
    
    下面我们具体看看编译的过程。我们跳过语法分析等,直接来到目标文件的生成。假设我们有一个1.cpp文件
     int n = 1;

    void f()
     {
        ++n;
    }

    它编译出来的目标文件1.o就会有一个区域(假定名称为2进制段),包含了以上数据/函数,其中有n, f,以文件偏移量的形式给出很可能就是:
    偏移量    内容    长度
    0x000    n    4
    0x004    f     ??
    注意:这仅仅是猜测,不代表目标文件的真实布局。目标文件的各个数据不一定连续,也不一定按照这个顺序,当然也不一定从0x000开始。
    现在我们看看从0x004开始f函数的内容(在0x86平台下的猜测):
    0x004 inc DWORD PTR [0x000]
    0x00? ret
    注意n++已经被翻译为:inc DWORD PTR [0x000],也就是把本单元0x000位置上的一个DWORD(4字节)加1。
    
    下面如果有另一个2.cpp,如下
    extern int n;
    void g()
    {
        ++n;
    }
    那么它的目标文件2.o的2进制段就应该是
    偏移量    内容    长度
    0x000    g     ??
    为什么这里没有n的空间(也就是n的定义),因为n被声明为extern,表明n的定义在别的编译单元里。别忘了编译的时候是不可能知道别的编译单元的情况的,故编译器不知道n究竟在何处,所以这个时候g的二进制代码里没有办法填写inc DWORD PTR [???]中的???部分。怎么办呢?这个工作就只能交给后来的链接器去处理。为了让链接器知道哪些地方的地址是没有填好的,所以目标文件还要有一个“未解决符号表”,也就是unresolved symbol table. 同样,提供n的定义的目标文件(也就是1.o)也要提供一个“导出符号表”,export symbol table, 来告诉链接器自己可以提供哪些地址。
    让我们理一下思路:现在我们知道,每一个目标文件,除了拥有自己的数据和二进制代码之外,还要至少提供2个表:未解决符号表和导出符号表,分别告诉链接器自己需要什么和能够提供什么。下面的问题是,如何在2个表之间建立对应关系。这里就有一个新的概念:符号。在C/C++中,每一个变量和函数都有自己的符号。例如变量n的符号就是“n”。函数的符号要更加复杂,它需要结合函数名及其参数和调用惯例等,得到一个唯一的字符串。f的符号可能就是"_f"(根据不同编译器可以有变化)。
    所以,1.o的导出符号表就是
    符号    地址
    n    0x000
    _f    0x004
    而未解决符号表为空
    2.o的导出符号表为
    符号    地址
    _g    0x000
    未解决符号表为
    符号    地址    
    n    0x001    
    这里0x001为从0x000开始的inc DWORD PTR [???]的二进制编码中存储???的起始地址(这里假设inc的机器码的第2-5字节为要+1的绝对地址,需要知道确切情况可查手册)。这个表告诉链接器,在本编译单元0x001的位置上有一个地址,该地址值不明,但是具有符号n。
    链接的时候,链接器在2.o里发现了未解决符号n,那么在查找所有编译单元的时候,在1.o中发现了导出符号n,那么链接器就会将n的地址0x000填写到2.o的0x001的位置上。
    “打住”,可能你就会跳出来指责我了。如果这样做得话,岂不是g的内容就会变成inc DWORD PTR [0x000],按照之前的理解,这是将本单元的0x000地址的4字节加1,而不是将1.o的对应位置加1。是的,因为每个编译单元的地址都是从0开始的,所以最终拼接起来的时候地址会重复。所以链接器会在拼接的时候对各个单元的地址进行调整。这个例子中,假设2.o的0x00000000地址被定位在可执行文件的0x00001000上,而1.o的0x00000000地址被定位在可执行文件的0x00002000上,那么实际上对链接器来说,1.o的导出符号表其实
    符号    地址
    n    0x000 + 0x2000
    _f    0x004 + 0x2000
    而未解决符号表为空
    2.o的导出符号表为
    符号    地址
    _g    0x000 + 0x1000
    未解决符号表为
    符号    地址            
    n    0x001 + 0x1000
所以最终g的代码会变为inc DWORD PTR [0x000 + 0x2000]。
    最后还有一个漏洞,既然最后n的地址变为0x2000了,那么以前f的代码inc DWORD PTR [0x000]就是错误的了。所以目标文件为此还要提供一个表,叫做地址重定向表address redirect table。
    对于1.o来说,它的重定向表为
    地址
    0x005
    这个表不需要符号,当链接器处理这个表的时候,发现地址为0x005的位置上有一个地址需要重定向,那么直接在以0x005开始的4个字节上加上0x2000就可以了。
    让我们总结一下:编译器把一个cpp编译为目标文件的时候,除了要在目标文件里写入cpp里包含的数据和代码,还要至少提供3个表:未解决符号表,导出符号表和地址重定向表。
    未解决符号表提供了所有在该编译单元里引用但是定义并不在本编译单元里的符号及其出现的地址。
    导出符号表提供了本编译单元具有定义,并且愿意提供给其他编译单元使用的符号及其地址。
    地址重定向表提供了本编译单元所有对自身地址的引用的记录。
    链接器进行链接的时候,首先决定各个目标文件在最终可执行文件里的位置。然后访问所有目标文件的地址重定向表,对其中记录的地址进行重定向(即加上该编译单元实际在可执行文件里的起始地址)。然后遍历所有目标文件的未解决符号表,并且在所有的导出符号表里查找匹配的符号,并在未解决符号表中所记录的位置上填写实际的地址(也要加上拥有该符号定义的编译单元实际在可执行文件里的起始地址)。最后把所有的目标文件的内容写在各自的位置上,再作一些别的工作,一个可执行文件就出炉了。
    最终link 1.o 2.o .... 所生成的可执行文件大概是
    0x00000000  ????(别的一些信息)
    ....
    0x00001000  inc DWORD PTR [0x00002000]              //这里是2.o的开始,也就是g的定义
    0x00001005  ret                                  //假设inc为5个字节,这里是g的结尾
    ....
    0x00002000  0x00000001                           //这里是1.o的开始,也是n的定义(初始化为1)
    0x00002004  inc DWORD PTR [0x00002000]         //这里是f的开始
    0x00002009  ret                                  //假设inc为5个字节,这里是f的结尾
    ...
    ...
    实际链接的时候更为复杂,因为实际的目标文件里把数据/代码分为好几个区,重定向等要按区进行,但原理是一样的。


    
    现在我们可以来看看几个经典的链接错误了:
    unresolved external link..
    这个很显然,是链接器发现一个未解决符号,但是在导出符号表里没有找到对应的項。
    解决方案么,当然就是在某个编译单元里提供这个符号的定义就行了。(注意,这个符号可以是一个变量,也可以是一个函数),也可以看看是不是有什么该链接的文件没有链接
    duplicated external simbols...
    这个则是导出符号表里出现了重复项,因此链接器无法确定应该使用哪一个。这可能是使用了重复的名称,也可能有别的原因。


    我们再来看看C/C++语言里针对这一些而提供的特性:
    extern:这是告诉编译器,这个符号在别的编译单元里定义,也就是要把这个符号放到未解决符号表里去。(外部链接)
    
    static:如果该关键字位于全局函数或者变量的声明的前面,表明该编译单元不导出这个函数/变量的符号。因此无法在别的编译单元里使用。(内部链接)。如果是static局部变量,则该变量的存储方式和全局变量一样,但是仍然不导出符号。
    
    默认链接属性:对于函数和变量,模认外部链接,对于const变量,默认内部链接。(可以通过添加extern和static改变链接属性)

    外部链接的利弊:外部链接的符号,可以在整个程序范围内使用(因为导出了符号)。但是同时要求其他的编译单元不能导出相同的符号(不然就是duplicated external simbols)

    内部链接的利弊:内部链接的符号,不能在别的编译单元内使用。但是不同的编译单元可以拥有同样名称的内部链接符号。

    为什么头文件里一般只可以有声明不能有定义:头文件可以被多个编译单元包含,如果头文件里有定义,那么每个包含这个头文件的编译单元就都会对同一个符号进行定义,如果该符号为外部链接,则会导致duplicated external simbols。因此如果头文件里要定义,必须保证定义的符号只能具有内部链接。

    为什么常量默认为内部链接,而变量不是:
        这就是为了能够在头文件里如const int n = 0这样的定义常量。由于常量是只读的,因此即使每个编译单元都拥有一份定义也没有关系。如果一个定义于头文件里的变量拥有内部链接,那么如果出现多个编译单元都定义该变量,则其中一个编译单元对该变量进行修改,不会影响其他单元的同一变量,会产生意想不到的后果。

    为什么函数默认是外部链接:
        虽然函数是只读的,但是和变量不同,函数在代码编写的时候非常容易变化,如果函数默认具有内部链接,则人们会倾向于把函数定义在头文件里,那么一旦函数被修改,所有包含了该头文件的编译单元都要被重新编译。另外,函数里定义的静态局部变量也将被定义在头文件里。

    为什么类的静态变量不可以就地初始化:所谓就地初始化就是类似于这样的情况:
        class A
        {
            static char msg[] = "aha";
        };
不允许这样做得原因是,由于class的声明通常是在头文件里,如果允许这样做,其实就相当于在头文件里定义了一个非const变量。

    在C++里,头文件定义一个const对象会怎么样:
        一般不会怎么样,这个和C里的在头文件里定义const int一样,每一个包含了这个头文件的编译单元都会定义这个对象。但由于该对象是const的,所以没什么影响。但是:有2种情况可能破坏这个局面:
        1。如果涉及到对这个const对象取地址并且依赖于这个地址的唯一性,那么在不同的编译单元里,取到的地址可以不同。(但一般很少这么做)
        2。如果这个对象具有mutable的变量,某个编译单元对其进行修改,则同样不会影响到别的编译单元。

    为什么类的静态常量也不可以就地初始化:
        因为这相当于在头文件里定义了const对象。作为例外,int/char等可以进行就地初始化,是因为这些变量可以直接被优化为立即数,就和宏一样。

    内联函数:
        C++里的内联函数由于类似于一个宏,因此不存在链接属性问题。

    为什么公共使用的内联函数要定义于头文件里:
        因为编译时编译单元之间互相不知道,如果内联函数被定义于.cpp文件中,编译其他使用该函数的编译单元的时候没有办法找到函数的定义,因此无法对函数进行展开。所以说如果内联函数定义于.cpp文件里,那么就只有这个cpp文件可以是用这个函数。

    头文件里内联函数被拒绝会怎样:
        如果定义于头文件里的内联函数被拒绝,那么编译器会自动在每个包含了该头文件的编译单元里定义这个函数并且不导出符号。

    如果被拒绝的内联函数里定义了静态局部变量,这个变量会被定义于何处:
        早期的编译器会在每个编译单元里定义一个,并因此产生错误的结果,较新的编译器会解决这个问题,手段未知。

    为什么export关键字没人实现:
        export要求编译器跨编译单元查找函数定义,使得编译器实现非常困难。




  编译和静态链接就分析到这里,我会带着动态链接和load的详解杀回来

分享到:
评论

相关推荐

    ANSYS 单元中文详解

    ### ANSYS 单元中文详解——LINK1单元深入解析 #### 一、LINK1单元概述 **LINK1单元**主要用于模拟桁架、链杆及弹簧等结构元件,在二维空间内进行建模。作为一种只能承受单轴拉压的单元,LINK1在实际工程应用中...

    VC++编译器cl.exe的全部命令开关详解

    ### VC++编译器cl.exe的全部命令开关详解 #### 概述 本文将详细介绍Microsoft Visual C++(VC++)编译器中的`cl.exe`命令行工具的各个选项及其功能。`cl.exe`是VC++环境中的核心编译器,用于编译C/C++源代码到可...

    CSS(层叠样式表)笔记.txt

    ### CSS(层叠样式表)知识点详解 #### 一、CSS概述 - **定义**:CSS,即Cascading Style Sheets(层叠样式表),是一种用于控制网页样式和布局的语言。它与HTML相结合,使开发者能够高效管理和美化网页界面。 - *...

    VC++6.0编译选项大全

    ### VC++6.0编译选项详解 #### 一、概览 Microsoft Visual C++ 6.0(简称VC++6.0或VC6)是一款非常经典的集成开发环境(IDE),广泛应用于Windows平台下的C/C++程序开发。为了提高代码质量、优化编译速度以及满足...

    基于NSGA2与熵权TOPSIS的电力系统储能选址定容优化及Matpower潮流计算研究

    内容概要:本文详细探讨了利用NSGA2算法进行电力系统中储能系统的选址和定容优化,并结合熵权TOPSIS方法选择最优解。首先介绍了使用Matpower工具包进行潮流计算的基础步骤,随后深入讨论了储能系统引入后的复杂性和优化目标设定。文中展示了如何构建目标函数,包括储能的投资成本和系统电压偏差,并详细解释了NSGA2算法的具体实现,如种群初始化、交叉变异操作以及约束条件处理。最后,通过熵权法确定权重并应用TOPSIS方法对多个优化结果进行评估,选出综合性能最佳的储能配置方案。 适合人群:从事电力系统规划、优化算法研究的专业人士,尤其是对储能系统优化感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要解决电力系统中储能系统选址和定容问题的实际工程项目。主要目标是在满足系统稳定性要求的前提下,最小化储能系统的投资成本,提高系统的经济性和可靠性。 其他说明:文章提供了详细的代码片段和理论推导,帮助读者更好地理解和实施所提出的优化方法。此外,还提到了一些实际应用中的注意事项,如SOC约束处理、参数选择等,为后续的研究和应用提供了宝贵的实践经验。

    基于python+pyqt5实现视频自动化下载、剪辑和上传系统源码+项目说明.zip

    基于python+pyqt5实现视频自动化下载、剪辑和上传系统源码+项目说明.zip 该项目是用脚本实现部分视频网站视频内容的自动化下载、剪辑以及上传,其中界面是用PyQT做的。 使用的浏览器驱动是undetected_chromedriver,可以跳过tiktok的机器人检查 使用的浏览器是91,版本:Google_Chrome_(64bit)_v91.0.4472.77 【功能】 自动从各种视频网站下载视频 支持视频剪辑和合集制作 支持自动上传视频到视频网站 技术栈 Python PyQT undetected_chromedriver

    西门子S7-1200双套三坐标6轴联动控制系统的设计与实现

    内容概要:本文详细介绍了西门子S7-1200双套三坐标6轴联动控制系统的开发与调试经验。主要内容涵盖双PLC通信机制、轴控制逻辑、安全联锁设计以及触摸屏程序绑定等方面。文中通过具体代码示例展示了如何利用SCL语言实现高效稳定的多轴联动控制,并分享了实际项目中的最佳实践和技术难点解决方案。此外,还讨论了程序结构优化、报警代码设计、数据块管理等关键环节,强调了模块化设计思想的应用及其带来的效率提升。 适合人群:从事工业自动化领域的工程师,尤其是熟悉西门子PLC编程的专业人士。 使用场景及目标:适用于需要进行复杂运动控制的自动化生产线,如汽车制造、电子装配等行业。主要目标是提高生产效率,确保设备运行的安全性和稳定性。 其他说明:文中提到的许多技术和方法不仅限于特定型号的PLC,对于其他品牌的控制器也有一定的借鉴意义。同时,提供的代码片段可以直接应用于类似项目中,帮助开发者快速搭建可靠的控制系统。

    NFC Tools Pro

    NFC Tools是一个应用程序,允许你在你的 NFC 标签和其他 RFID 兼容芯片上读取或写入或编程代码任务。NFC Tools PRO版本包括很多其他的附加功能,比如配置文件管理等。保存你的NFC标签或任务的配置文件,以便你以后重新使用它们。导出和导入很容易。NFC Tools PRO官方版允许你直接从现有的 NFC 标签导入你的记录或任务。 你可以很快编辑你的标签。此外还可以直接运行你的任务配置文件,不需要NFC 标签。

    protobuf-6.30.1-py3-none-any.whl

    该资源为protobuf-6.30.1-py3-none-any.whl,欢迎下载使用哦!

    FLAC3D中壳单元与衬砌单元内力提取及处理技巧

    内容概要:本文详细介绍了如何在FLAC3D中提取壳单元和衬砌单元的关键内力数据,如弯矩、轴力和剪力。针对壳单元,文中提供了具体的FISH命令和函数,展示了如何利用gp.extra属性提取弯矩,并强调了局部坐标系方向的重要性。对于衬砌单元,则介绍了专门的命令和注意事项,如使用liner组件提取轴力和剪力,以及如何处理弯矩数据。此外,还分享了一些实用的经验和技巧,如批量数据处理、单位换算、内力符号规则等。最后,提到了使用Python进行后处理的方法,将提取的数据转化为更直观的形式,便于进一步分析。 适合人群:从事岩土工程、隧道工程及相关领域的工程师和技术人员,尤其是对FLAC3D有一定基础的用户。 使用场景及目标:帮助用户掌握FLAC3D中壳单元和衬砌单元内力提取的具体方法,提高工作效率,确保数据分析的准确性。适用于需要进行结构内力分析、支护设计优化等项目的工程师。 其他说明:文章不仅提供了详细的命令和函数示例,还分享了许多实战经验和常见错误的规避方法,有助于初学者少走弯路。同时,强调了内力符号规则和单位换算的重要性,避免因疏忽导致的重大失误。

    ST PMSM FOC电机控制资料包2.0:全面解析STM32电机控制核心技术与实战技巧

    内容概要:本文详细介绍了ST公司发布的HL07:ST PMSM FOC电机控制资料包2.0的内容及其应用。资料包涵盖了ST芯片电机控制的全源代码、详细文档、多个工程源码、stm32库培训资料及例程源码。文中通过具体的代码示例,如GPIO初始化、PWM配置、ADC采样、Clarke变换、PID调节器、SVPWM生成等,深入剖析了电机控制的关键技术和优化技巧。此外,还揭示了一些隐藏的技术细节和调试技巧,如硬件同步、动态调整PID参数、电机参数自识别等。 适合人群:电机控制工程师、嵌入式开发人员、尤其是对STM32和FOC算法感兴趣的开发者。 使用场景及目标:帮助读者深入了解ST芯片电机控制的具体实现,掌握从硬件配置到算法优化的全过程,提高实际项目的开发效率和质量。适用于需要进行电机控制系统设计、调试和优化的工程项目。 其他说明:资料包中的代码和文档非常实用,提供了丰富的实战经验和优化建议,尤其适合初学者和有一定基础的研发人员。同时,文中提到的一些特殊技巧和注意事项有助于避免常见的开发陷阱,提升系统的稳定性和性能。

    人工智能2025年AI领袖与技术发展趋势:多模态AI、量子计算及行业应用展望

    内容概要:文章探讨了2025年AI技术发展趋势及潜在的GPT级技术突破。首先回顾了GPT系列模型的发展历程及其对自然语言处理领域的深远影响。接着,通过介绍Geoffrey Hinton、李飞飞和张晨等AI领袖的观点,阐述了AI技术在实际应用场景中的挑战与机遇。文中详细描述了AI大模型的演进,包括多模态技术的发展、轻量化趋势以及可控性和可解释性的提升。此外,还介绍了AI计算力的革命性升级,如量子计算、云计算+AI和边缘AI的发展。最后,文章分析了AI在医疗、金融、教育、自动驾驶等行业的落地应用,并指出了面临的挑战与机遇,展望了未来的技术和社会影响。 适合人群:对AI技术感兴趣的从业者、研究人员、企业家及政策制定者。 使用场景及目标:①了解AI技术的最新进展和未来趋势;②探索AI技术在各行业的应用前景;③评估AI技术带来的挑战与机遇,为相关决策提供参考。 阅读建议:本文内容涵盖广泛,既有技术细节又有宏观展望,建议读者结合自身背景选择感兴趣的部分深入阅读,重点关注与自身行业或研究方向相关的章节。

    基于樽海鞘算法优化的极限学习机回归预测及其与BP、GRNN、ELM的性能对比研究

    内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。

    工业自动化中汇川PLC与基恩士PLC基于EIP通讯的联机实现及应用

    内容概要:本文详细介绍了汇川PLC与基恩士PLC通过Ethernet/IP (EIP) 协议实现联机的方法及其应用场景。首先,文章解释了硬件配置,包括基恩士KV-7300 CPU搭配KV-EP21v以太网通信模块以及汇川AM-400系列PLC的网口连接。接下来,分别阐述了基恩士和汇川PLC的程序框架,涵盖初始化EIP通讯模块、设置IP地址、建立连接、数据映射及心跳检测机制等关键技术点。此外,文中提供了具体的代码示例和调试建议,如使用Wireshark抓包工具排查问题,并强调了数据同步、字节序转换、超时处理等方面需要注意的地方。最后,分享了一些实践经验,例如确保正确的IP地址分配、合理的缓冲区大小规划、良好的接地措施等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程有一定基础并希望深入了解不同品牌PLC间通讯机制的专业人士。 使用场景及目标:适用于需要将不同品牌PLC集成到同一个控制系统中的工业项目,旨在提高系统的灵活性和互操作性。通过掌握本文介绍的技术要点,可以有效减少因PLC品牌差异带来的兼容性和稳定性问题。 其他说明:文中不仅提供了理论指导,还结合实际案例进行了深入浅出的讲解,帮助读者更好地理解和应用相关技术。同时,针对可能出现的问题给出了预防和解决方案,使读者能够在实践中少走弯路。

    基于STM32F4的VESC非线性磁链观测器移植与优化

    内容概要:本文详细记录了作者将VESC项目的非线性磁链观测器移植到STM32F4开发板的过程。首先介绍了FOC技术和VESC源码的重要性和特点,然后重点阐述了非线性磁链观测器的实现方法及其核心代码。接着讨论了移植过程中遇到的技术难题,如实时性、稳定性、中断处理、电流采样等问题,并分享了解决这些问题的具体措施。最后展示了测试结果,证明了移植的成功以及观测器的良好性能。 适合人群:具有一定嵌入式开发经验的研发人员,特别是从事电机控制领域的工程师和技术爱好者。 使用场景及目标:适用于希望深入理解VESC源码和非线性磁链观测器的工作机制,掌握STM32F4平台上FOC算法实现的人群。目标是在实际项目中应用这些技术,提高电机控制系统的性能。 其他说明:文中提供了大量实用的代码片段和调试技巧,帮助读者更好地理解和解决问题。此外,作者还分享了一些个人经验和心得,增加了文章的趣味性和实用性。

    Quectel-LTE&5G-Windows-USB-Driver-V2.2.6-beta-20201230

    移远EC20 Windows驱动 操作系统 - 桌面系统 - 移远EC20 Windows驱动

    检证资料jianzhen.ppt

    检证资料jianzhen.ppt

    ### 【嵌入式开发】基于Qt的ATK-DLRK3568实战指南:从入门到项目实战题:嵌

    内容概要:本文档《ATK-DLRK3568嵌入式Qt开发实战V1.2》是正点原子出品的一份面向初学者的嵌入式Qt开发指南,主要内容涵盖嵌入式Linux环境下Qt的安装配置、C++基础、Qt基础、多线程编程、网络编程、多媒体开发、数据库操作以及项目实战案例。文档从最简单的“Hello World”程序开始,逐步引导读者熟悉Qt开发环境的搭建、常用控件的使用、信号与槽机制、UI设计、数据处理等关键技术点。此外,文档还提供了详细的项目实战案例,如车牌识别系统的开发,帮助读者将理论知识应用于实际项目中。 适合人群:具备一定Linux和C++基础,希望快速入门嵌入式Qt开发的初学者或有一定开发经验的研发人员。 使用场景及目标: 1. **环境搭建**:学习如何在Ubuntu环境下搭建Qt开发环境,包括安装必要的工具和库。 2. **基础知识**:掌握C++面向对象编程、Qt基础控件的使用、信号与槽机制等核心概念。 3. **高级功能**:理解多线程编程、网络通信、多媒体处理、数据库操作等高级功能的实现方法。 4. **项目实战**:通过具体的项目案例(如车牌识别系统),巩固

    tcl-tclxml-devel-3.2-26.el8.x64-86.rpm.tar.gz

    1、文件说明: Centos8操作系统tcl-tclxml-devel-3.2-26.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf tcl-tclxml-devel-3.2-26.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm

    C盘清理bat脚本自动清理C盘垃圾文件

    C盘清理bat脚本自动清理C盘垃圾文件

Global site tag (gtag.js) - Google Analytics