`
xangqun
  • 浏览: 83071 次
  • 性别: Icon_minigender_1
  • 来自: 江西
社区版块
存档分类
最新评论

Lucene学习总结之十:Lucene的分词器Analyzer(转)

阅读更多

1、抽象类Analyzer

其主要包含两个接口,用于生成TokenStream:

  • TokenStream tokenStream(String fieldName, Reader reader);
  • TokenStream reusableTokenStream(String fieldName, Reader reader) ;

所谓TokenStream,后面我们会讲到,是一个由分词后的Token结果组成的流,能够不断的得到下一个分成的Token。

为了提高性能,使得在同一个线程中无需再生成新的TokenStream对象,老的可以被重用,所以有reusableTokenStream一说。

所以Analyzer中有CloseableThreadLocal< Object > tokenStreams = new CloseableThreadLocal< Object >();成员变量,保存当前线程原来创建过的TokenStream,可用函数setPreviousTokenStream设定,用函数getPreviousTokenStream得到。

在reusableTokenStream函数中,往往用getPreviousTokenStream得到老的TokenStream对象,然后将TokenStream对象reset以下,从而可以从新开始得到Token流。

让我们看一下最简单的一个Analyzer:

public final class SimpleAnalyzer extends Analyzer {

  @Override

  public TokenStream tokenStream(String fieldName, Reader reader) {

    //返回的是将字符串最小化,并且按照空格分隔的Token

    return new LowerCaseTokenizer(reader);

  }

  @Override

  public TokenStream reusableTokenStream(String fieldName, Reader reader) throws IOException {

    //得到上一次使用的TokenStream,如果没有则生成新的,并且用setPreviousTokenStream放入成员变量,使得下一个可用。

    Tokenizer tokenizer = (Tokenizer) getPreviousTokenStream();

    if (tokenizer == null) {

      tokenizer = new LowerCaseTokenizer(reader);

      setPreviousTokenStream(tokenizer);

    } else

      //如果上一次生成过TokenStream,则reset。

      tokenizer.reset(reader);

    return tokenizer;

  }

}

 

2、TokenStream抽象类

TokenStream主要包含以下几个方法:

  • boolean incrementToken()用于得到下一个Token。
  • public void reset() 使得此TokenStrean可以重新开始返回各个分词。 

和原来的TokenStream返回一个Token对象不同,Lucene 3.0的TokenStream已经不返回Token对象了,那么如何保存下一个Token的信息呢。

在Lucene 3.0中,TokenStream是继承于AttributeSource,其包含Map,保存从class到对象的映射,从而可以保存不同类型的对象的值。

在TokenStream中,经常用到的对象是TermAttributeImpl,用来保存Token字符串;PositionIncrementAttributeImpl用来保存位置信息;OffsetAttributeImpl用来保存偏移量信息。

所以当生成TokenStream的时候,往往调用AttributeImpl tokenAtt = (AttributeImpl) addAttribute(TermAttribute.class)将TermAttributeImpl添加到Map中,并保存一个成员变量。

在incrementToken()中,将下一个Token的信息写入当前的tokenAtt,然后使用TermAttributeImpl.term()得到Token的字符串。

 

3、几个具体的TokenStream

在索引的时候,添加域的时候,可以指定Analyzer,使其生成TokenStream,也可以直接指定TokenStream:

public Field(String name, TokenStream tokenStream);

下面介绍两个单独使用的TokenStream

3.1、NumericTokenStream

上一节介绍NumericRangeQuery的时候,在生成NumericField的时候,其会使用NumericTokenStream,其incrementToken如下:

public boolean incrementToken() {

  if (valSize == 0)

    throw new IllegalStateException("call set???Value() before usage");

  if (shift >= valSize)

    return false;

  clearAttributes();

  //虽然NumericTokenStream欲保存数字,然而Lucene的Token只能保存字符串,因而要将数字编码为字符串,然后存入索引。

  final char[] buffer;

  switch (valSize) {

    //首先分配TermBuffer,然后将数字编码为字符串

    case 64:

      buffer = termAtt.resizeTermBuffer(NumericUtils.BUF_SIZE_LONG);

      termAtt.setTermLength(NumericUtils.longToPrefixCoded(value, shift, buffer));

      break;

    case 32:

      buffer = termAtt.resizeTermBuffer(NumericUtils.BUF_SIZE_INT);

      termAtt.setTermLength(NumericUtils.intToPrefixCoded((int) value, shift, buffer));

      break;

    default:

      throw new IllegalArgumentException("valSize must be 32 or 64");

  }

  typeAtt.setType((shift == 0) ? TOKEN_TYPE_FULL_PREC : TOKEN_TYPE_LOWER_PREC);

  posIncrAtt.setPositionIncrement((shift == 0) ? 1 : 0);

  shift += precisionStep;

  return true;

}

public static int intToPrefixCoded(final int val, final int shift, final char[] buffer) {

  if (shift>31 || shift<0)

    throw new IllegalArgumentException("Illegal shift value, must be 0..31");

  int nChars = (31-shift)/7 + 1, len = nChars+1;

  buffer[0] = (char)(SHIFT_START_INT + shift);

  int sortableBits = val ^ 0x80000000;

  sortableBits >>>= shift;

  while (nChars>=1) {

    //int按照每七位组成一个utf-8的编码,并且字符串大小比较的顺序同int大小比较的顺序完全相同。

    buffer[nChars--] = (char)(sortableBits & 0x7f);

    sortableBits >>>= 7;

  }

  return len;

}

 

3.2、SingleTokenTokenStream

SingleTokenTokenStream顾名思义就是此TokenStream仅仅包含一个Token,多用于保存一篇文档仅有一个的信息,如id,如time等,这些信息往往被保存在一个特殊的Token(如ID:ID, TIME:TIME)的倒排表的payload中的,这样可以使用跳表来增加访问速度。

所以SingleTokenTokenStream返回的Token则不是id或者time本身,而是特殊的Token,"ID:ID", "TIME:TIME",而是将id的值或者time的值放入payload中。

//索引的时候

int id = 0; //用户自己的文档号

String tokenstring = "ID";

byte[] value = idToBytes(); //将id装换为byte数组

Token token = new Token(tokenstring, 0, tokenstring.length);

token.setPayload(new Payload(value));

SingleTokenTokenStream tokenstream = new SingleTokenTokenStream(token);

Document doc = new Document();

doc.add(new Field("ID", tokenstream));

……

//当得到Lucene的文档号docid,并不想构造Document对象就得到用户的文档号时

TermPositions tp = reader.termPositions("ID:ID");

boolean ret = tp.skipTo(docid);

tp.nextPosition();

int payloadlength = tp.getPayloadLength();

byte[] payloadBuffer = new byte[payloadlength];

tp.getPayload(payloadBuffer, 0);

int id = bytesToID(); //将payloadBuffer转换为用户id

4、Tokenizer也是一种TokenStream

public abstract class Tokenizer extends TokenStream {

  protected Reader input;

  protected Tokenizer(Reader input) {

    this.input = CharReader.get(input);

  }

  public void reset(Reader input) throws IOException {

    this.input = input;

  }

}

以下重要的Tokenizer如下,我们将一一解析:

  • CharTokenizer
    • LetterTokenizer
      • LowerCaseTokenizer
    • WhitespaceTokenizer
  • ChineseTokenizer
  • CJKTokenizer
  • EdgeNGramTokenizer
  • KeywordTokenizer
  • NGramTokenizer
  • SentenceTokenizer
  • StandardTokenizer

4.1、CharTokenizer

CharTokenizer是一个抽象类,用于对字符串进行分词。

在构造函数中,生成了TermAttribute和OffsetAttribute两个属性,说明分词后除了返回分词后的字符外,还要返回offset。

offsetAtt = addAttribute(OffsetAttribute.class);

termAtt = addAttribute(TermAttribute.class);

其incrementToken函数如下:

public final boolean incrementToken() throws IOException {

  clearAttributes();

  int length = 0;

  int start = bufferIndex;

  char[] buffer = termAtt.termBuffer();

  while (true) {

    //不断读取reader中的字符到buffer中

    if (bufferIndex >= dataLen) {

      offset += dataLen;

      dataLen = input.read(ioBuffer);

      if (dataLen == -1) {

        dataLen = 0;

        if (length > 0)

          break;

        else

          return false;

      }

      bufferIndex = 0;

    }

    //然后逐一遍历buffer中的字符

    final char c = ioBuffer[bufferIndex++];

    //如果是一个token字符,则normalize后接着取下一个字符,否则当前token结束。 

    if (isTokenChar(c)) {

      if (length == 0)

        start = offset + bufferIndex - 1;

      else if (length == buffer.length)

        buffer = termAtt.resizeTermBuffer(1+length);

      buffer[length++] = normalize(c);

      if (length == MAX_WORD_LEN)

        break;

    } else if (length > 0)

      break;

  }

  termAtt.setTermLength(length);

  offsetAtt.setOffset(correctOffset(start), correctOffset(start+length));

  return true;

}

CharTokenizer是一个抽象类,其isTokenChar函数和normalize函数由子类实现。

其子类WhitespaceTokenizer实现了isTokenChar函数:

//当遇到空格的时候,当前token结束

protected boolean isTokenChar(char c) {

  return !Character.isWhitespace(c);

}

其子类LetterTokenizer如下实现isTokenChar函数:

protected boolean isTokenChar(char c) {

  return Character.isLetter(c);

}

LetterTokenizer的子类LowerCaseTokenizer实现了normalize函数,将字符串转换为小写:

protected char normalize(char c) {

  return Character.toLowerCase(c);

}

 

4.2、ChineseTokenizer

其在初始化的时候,添加TermAttribute和OffsetAttribute。

其incrementToken实现如下:

public boolean incrementToken() throws IOException {

    clearAttributes();

    length = 0;

    start = offset;

    while (true) {

        final char c;

        offset++;

        if (bufferIndex >= dataLen) {

            dataLen = input.read(ioBuffer);

            bufferIndex = 0;

        }

        if (dataLen == -1) return flush();

        else

            c = ioBuffer[bufferIndex++];

        switch(Character.getType(c)) {

        //如果是英文下小写字母或数字的时候,则属于同一个Token,push到buffer中 

        case Character.DECIMAL_DIGIT_NUMBER:

        case Character.LOWERCASE_LETTER:

        case Character.UPPERCASE_LETTER:

            push(c);

            if (length == MAX_WORD_LEN) return flush();

            break;

        //中文属于OTHER_LETTER,当出现中文字符的时候,则上一个Token结束,并将当前字符push到buffer中

        case Character.OTHER_LETTER:

            if (length>0) {

                bufferIndex--;

                offset--;

                return flush();

            }

            push(c);

            return flush();

        default:

            if (length>0) return flush();

            break;

        }

    }

}

 

4.3、KeywordTokenizer

KeywordTokenizer是将整个字符作为一个Token返回的。

其incrementToken函数如下:

public final boolean incrementToken() throws IOException {

  if (!done) {

    clearAttributes();

    done = true;

    int upto = 0;

    char[] buffer = termAtt.termBuffer();

    //将字符串全部读入buffer,然后返回。

    while (true) {

      final int length = input.read(buffer, upto, buffer.length-upto);

      if (length == -1) break;

      upto += length;

      if (upto == buffer.length)

        buffer = termAtt.resizeTermBuffer(1+buffer.length);

    }

    termAtt.setTermLength(upto);

    finalOffset = correctOffset(upto);

    offsetAtt.setOffset(correctOffset(0), finalOffset);

    return true;

  }

  return false;

}

 

4.4、CJKTokenizer

其incrementToken函数如下:

 

public boolean incrementToken() throws IOException {

    clearAttributes();

    while(true) {

      int length = 0;

      int start = offset;

      while (true) {

        //得到当前的字符,及其所属的Unicode块

        char c;

        Character.UnicodeBlock ub;

        offset++;

        if (bufferIndex >= dataLen) {

            dataLen = input.read(ioBuffer);

            bufferIndex = 0;

        }

        if (dataLen == -1) {

            if (length > 0) {

                if (preIsTokened == true) {

                    length = 0;

                    preIsTokened = false;

                }

                break;

            } else {

                return false;

            }

        } else {

            c = ioBuffer[bufferIndex++];

            ub = Character.UnicodeBlock.of(c);

        }

        //如果当前字符输入ASCII码

        if ((ub == Character.UnicodeBlock.BASIC_LATIN) || (ub == Character.UnicodeBlock.HALFWIDTH_AND_FULLWIDTH_FORMS)) {

            if (ub == Character.UnicodeBlock.HALFWIDTH_AND_FULLWIDTH_FORMS) {

              int i = (int) c;

              if (i >= 65281 && i <= 65374) {

                //将半型及全型形式Unicode转变为普通的ASCII码

                i = i - 65248;

                c = (char) i;

              }

            }

            //如果当前字符是字符或者"_" "+" "#"

            if (Character.isLetterOrDigit(c) || ((c == '_') || (c == '+') || (c == '#'))) {

                if (length == 0) {

                    start = offset - 1;

                } else if (tokenType == DOUBLE_TOKEN_TYPE) {

                    offset--;

                    bufferIndex--;

                    if (preIsTokened == true) {

                        length = 0;

                        preIsTokened = false;

                        break;

                    } else {

                        break;

                    }

                }

                //将当前字符放入buffer

                buffer[length++] = Character.toLowerCase(c);

                tokenType = SINGLE_TOKEN_TYPE;

                if (length == MAX_WORD_LEN) {

                    break;

                }

            } else if (length > 0) {

                if (preIsTokened == true) {

                    length = 0;

                    preIsTokened = false;

                } else {

                    break;

                }

            }

        } else {

            //如果非ASCII字符

            if (Character.isLetter(c)) {

                if (length == 0) {

                    start = offset - 1;

                    buffer[length++] = c;

                    tokenType = DOUBLE_TOKEN_TYPE;

                } else {

                  if (tokenType == SINGLE_TOKEN_TYPE) {

                        offset--;

                        bufferIndex--;

                        break;

                    } else {

                        //非ASCII码字符,两个字符作为一个Token

                       //(如"中华人民共和国"分词为"中华","华人","人民","民共","共和","和国")

                        buffer[length++] = c;

                        tokenType = DOUBLE_TOKEN_TYPE;

                        if (length == 2) {

                            offset--;

                            bufferIndex--;

                            preIsTokened = true;

                            break;

                        }

                    }

                }

            } else if (length > 0) {

                if (preIsTokened == true) {

                    length = 0;

                    preIsTokened = false;

                } else {

                    break;

                }

            }

        }

    }

    if (length > 0) {

      termAtt.setTermBuffer(buffer, 0, length);

      offsetAtt.setOffset(correctOffset(start), correctOffset(start+length));

      typeAtt.setType(TOKEN_TYPE_NAMES[tokenType]);

      return true;

    } else if (dataLen == -1) {

      return false;

    }

  }

}

4.5、SentenceTokenizer

其是按照如下的标点来拆分句子:"。,!?;,!?;"

让我们来看下面的例子:

String s = "据纽约时报周三报道称,苹果已经超过微软成为美国最有价值的  科技公司。这是一个不容忽视的转折点。";

StringReader sr = new StringReader(s);

SentenceTokenizer tokenizer = new SentenceTokenizer(sr);

boolean hasnext = tokenizer.incrementToken();

while(hasnext){

  TermAttribute ta = tokenizer.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = tokenizer.incrementToken();

}

结果为:

据纽约时报周三报道称,
苹果已经超过微软成为美国最有价值的
科技公司。
这是一个不容忽视的转折点。

其incrementToken函数如下:

public boolean incrementToken() throws IOException {

  clearAttributes();

  buffer.setLength(0);

  int ci;

  char ch, pch;

  boolean atBegin = true;

  tokenStart = tokenEnd;

  ci = input.read();

  ch = (char) ci;

  while (true) {

    if (ci == -1) {

      break;

    } else if (PUNCTION.indexOf(ch) != -1) {

      //出现标点符号,当前句子结束,返回当前Token

      buffer.append(ch);

      tokenEnd++;

      break;

    } else if (atBegin && Utility.SPACES.indexOf(ch) != -1) {

      tokenStart++;

      tokenEnd++;

      ci = input.read();

      ch = (char) ci;

    } else {

      buffer.append(ch);

      atBegin = false;

      tokenEnd++;

      pch = ch;

      ci = input.read();

      ch = (char) ci;

      //当连续出现两个空格,或者\r\n的时候,则当前句子结束,返回当前Token

      if (Utility.SPACES.indexOf(ch) != -1

          && Utility.SPACES.indexOf(pch) != -1) {

        tokenEnd++;

        break;

      }

    }

  }

  if (buffer.length() == 0)

    return false;

  else {

    termAtt.setTermBuffer(buffer.toString());

    offsetAtt.setOffset(correctOffset(tokenStart), correctOffset(tokenEnd));

    typeAtt.setType("sentence");

    return true;

  }

}

 

5、TokenFilter也是一种TokenStream

来对Tokenizer后的Token作过滤,其使用的是装饰者模式。

public abstract class TokenFilter extends TokenStream {

  protected final TokenStream input;

  protected TokenFilter(TokenStream input) {

    super(input);

    this.input = input;

  }

}

 

5.1、ChineseFilter

其incrementToken函数如下:

public boolean incrementToken() throws IOException {

    while (input.incrementToken()) {

        char text[] = termAtt.termBuffer();

        int termLength = termAtt.termLength();

       //如果不被停词表过滤掉

        if (!stopTable.contains(text, 0, termLength)) {

            switch (Character.getType(text[0])) {

            //如果是英文且长度超过一,则算一个Token,否则不算一个Token

            case Character.LOWERCASE_LETTER:

            case Character.UPPERCASE_LETTER:

                if (termLength>1) {

                    return true;

                }

                break;

           //如果是中文则算一个Token

            case Character.OTHER_LETTER:

                return true;

            }

        }

    }

    return false;

}

举例:

String s = "Javaeye: IT外企那点儿事。1.外企也就那么会儿事。";

StringReader sr = new StringReader(s);

ChineseTokenizer ct = new ChineseTokenizer(sr);

ChineseFilter filter = new ChineseFilter(ct);

boolean hasnext = filter.incrementToken();

while(hasnext){

  TermAttribute ta = filter.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = filter.incrementToken();

}

结果为:

javaeye














 

5.2、LengthFilter

其incrementToken函数如下:

public final boolean incrementToken() throws IOException {

  while (input.incrementToken()) {

    int len = termAtt.termLength();

    //当当前字符串的长度在指定范围内的时候则返回。

    if (len >= min && len <= max) {

        return true;

    }

  }

  return false;

}

举例如下:

String s = "a it has this there string english analyzer";

StringReader sr = new StringReader(s);

WhitespaceTokenizer wt = new WhitespaceTokenizer(sr);

LengthFilter filter = new LengthFilter(wt, 4, 7);

boolean hasnext = filter.incrementToken();

while(hasnext){

  TermAttribute ta = filter.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = filter.incrementToken();

}

结果如下:

this
there
string
english

 

5.3、LowerCaseFilter

其incrementToken函数如下:

public final boolean incrementToken() throws IOException {

  if (input.incrementToken()) {

    final char[] buffer = termAtt.termBuffer();

    final int length = termAtt.termLength();

    for(int i=0;i<length;i++)

      //转小写

      buffer[i] = Character.toLowerCase(buffer[i]);

    return true;

  } else

    return false;

}

 

5.4、NumericPayloadTokenFilter

public final boolean incrementToken() throws IOException {

  if (input.incrementToken()) {

    if (typeAtt.type().equals(typeMatch))

      //设置payload

      payloadAtt.setPayload(thePayload);

    return true;

  } else {

    return false;

  }

}

 

5.5、PorterStemFilter

其成员变量PorterStemmer stemmer,其实现著名的stemming算法是The Porter Stemming Algorithm,其主页为http://tartarus.org/~martin/PorterStemmer/,也可查看其论文http://tartarus.org/~martin/PorterStemmer/def.txt

通过以下网页可以进行简单的测试:Porter's Stemming Algorithm Online[http://facweb.cs.depaul.edu/mobasher/classes/csc575/porter.html]

cars –> car

driving –> drive

tokenization –> token

其incrementToken函数如下:

public final boolean incrementToken() throws IOException {

  if (!input.incrementToken())

    return false;

  if (stemmer.stem(termAtt.termBuffer(), 0, termAtt.termLength()))

    termAtt.setTermBuffer(stemmer.getResultBuffer(), 0, stemmer.getResultLength());

  return true;

}

举例:

String s = "Tokenization is the process of breaking a stream of text up into meaningful elements called tokens.";

StringReader sr = new StringReader(s);

LowerCaseTokenizer lt = new LowerCaseTokenizer(sr);

PorterStemFilter filter = new PorterStemFilter(lt);

boolean hasnext = filter.incrementToken();

while(hasnext){

  TermAttribute ta = filter.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = filter.incrementToken();

}

结果为:

token
is
the
process
of
break
a
stream
of
text
up
into
meaning
element
call
token

 

5.6、ReverseStringFilter

public boolean incrementToken() throws IOException {

  if (input.incrementToken()) {

    int len = termAtt.termLength();

    if (marker != NOMARKER) {

      len++;

      termAtt.resizeTermBuffer(len);

      termAtt.termBuffer()[len - 1] = marker;

    }

    //将token反转

    reverse( termAtt.termBuffer(), len );

    termAtt.setTermLength(len);

    return true;

  } else {

    return false;

  }

}

public static void reverse( char[] buffer, int start, int len ){

  if( len <= 1 ) return;

  int num = len>>1;

  for( int i = start; i < ( start + num ); i++ ){

    char c = buffer[i];

    buffer[i] = buffer[start * 2 + len - i - 1];

    buffer[start * 2 + len - i - 1] = c;

  }

}

举例:

String s = "Tokenization is the process of breaking a stream of text up into meaningful elements called tokens.";

StringReader sr = new StringReader(s);

LowerCaseTokenizer lt = new LowerCaseTokenizer(sr);

ReverseStringFilter filter = new ReverseStringFilter(lt);

boolean hasnext = filter.incrementToken();

while(hasnext){

  TermAttribute ta = filter.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = filter.incrementToken();

}

结果为:

noitazinekot
si
eht
ssecorp
fo
gnikaerb
a
maerts
fo
txet
pu
otni
lufgninaem
stnemele
dellac
snekot

 

5.7、SnowballFilter

其包含成员变量SnowballProgram stemmer,其是一个抽象类,其子类有EnglishStemmer和PorterStemmer等。

public final boolean incrementToken() throws IOException {

  if (input.incrementToken()) {

    String originalTerm = termAtt.term();

    stemmer.setCurrent(originalTerm);

    stemmer.stem();

    String finalTerm = stemmer.getCurrent();

    if (!originalTerm.equals(finalTerm))

      termAtt.setTermBuffer(finalTerm);

    return true;

  } else {

    return false;

  }

}

举例:

String s = "Tokenization is the process of breaking a stream of text up into meaningful elements called tokens.";

StringReader sr = new StringReader(s);

LowerCaseTokenizer lt = new LowerCaseTokenizer(sr);

SnowballFilter filter = new SnowballFilter(lt, new EnglishStemmer());

boolean hasnext = filter.incrementToken();

while(hasnext){

  TermAttribute ta = filter.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = filter.incrementToken();

}

结果如下:

token
is
the
process
of
break
a
stream
of
text
up
into
meaning
element
call
token

 

5.8、TeeSinkTokenFilter

TeeSinkTokenFilter可以使得已经分好词的Token全部或者部分的被保存下来,用于生成另一个TokenStream可以保存在其他的域中。

我们可用如下的语句生成一个TeeSinkTokenFilter:

TeeSinkTokenFilter source = new TeeSinkTokenFilter(new WhitespaceTokenizer(reader));

然后使用函数newSinkTokenStream()或者newSinkTokenStream(SinkFilter filter)生成一个SinkTokenStream:

TeeSinkTokenFilter.SinkTokenStream sink = source.newSinkTokenStream();

其中在newSinkTokenStream(SinkFilter filter)函数中,将新生成的SinkTokenStream保存在TeeSinkTokenFilter的成员变量sinks中。

在TeeSinkTokenFilter的incrementToken函数中:

public boolean incrementToken() throws IOException {

  if (input.incrementToken()) {

    //对于每一个Token,依次遍历成员变量sinks

    AttributeSource.State state = null;

    for (WeakReference<SinkTokenStream> ref : sinks) {

      //对于每一个SinkTokenStream,首先调用函数accept看是否接受,如果接受则将此Token也加入此SinkTokenStream。

      final SinkTokenStream sink = ref.get();

      if (sink != null) {

        if (sink.accept(this)) {

          if (state == null) {

            state = this.captureState();

          }

          sink.addState(state);

        }

      }

    }

    return true;

  }

  return false;

}

SinkTokenStream.accept调用SinkFilter.accept,对于默认的ACCEPT_ALL_FILTER则接受所有的Token:

private static final SinkFilter ACCEPT_ALL_FILTER = new SinkFilter() {

  @Override

  public boolean accept(AttributeSource source) {

    return true;

  }

};

这样SinkTokenStream就能够保存下所有WhitespaceTokenizer分好的Token。

当我们使用比较复杂的分成系统的时候,分词一篇文章往往需要耗费比较长的时间,当分好的词需要再次使用的时候,再分一次词实在太浪费了,于是可以用上述的例子,将分好的词保存在一个TokenStream里面就可以了。

如下面的例子:

 

String s = "this is a book";

StringReader reader = new StringReader(s);

TeeSinkTokenFilter source = new TeeSinkTokenFilter(new WhitespaceTokenizer(reader));

TeeSinkTokenFilter.SinkTokenStream sink = source.newSinkTokenStream();

boolean hasnext = source.incrementToken();

while(hasnext){

  TermAttribute ta = source.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = source.incrementToken();

}

System.out.println("---------------------------------------------");

hasnext = sink.incrementToken();

while(hasnext){

  TermAttribute ta = sink.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = sink.incrementToken();

}

结果为:

this
is
a
book
---------------------------------------------
this
is
a
book

当然有时候我们想在分好词的一系列Token中,抽取我们想要的一些实体,保存下来。

如下面的例子:

  String s = "Japan will always balance its national interests between China and America.";

  StringReader reader = new StringReader(s);

  TeeSinkTokenFilter source = new TeeSinkTokenFilter(new LowerCaseTokenizer(reader));

  //一个集合,保存所有的国家名称

  final HashSet<String> countryset = new HashSet<String>();

  countryset.add("japan");

  countryset.add("china");

  countryset.add("america");

  countryset.add("korea");

  SinkFilter countryfilter = new SinkFilter() {

    @Override

    public boolean accept(AttributeSource source) {

      TermAttribute ta = source.getAttribute(TermAttribute.class);

      //如果在国家名称列表中,则保留

      if(countryset.contains(ta.term())){

        return true;

      }

      return false;

    }

  };

  TeeSinkTokenFilter.SinkTokenStream sink = source.newSinkTokenStream(countryfilter);

  //由LowerCaseTokenizer对语句进行分词,并把其中的国家名称保存在SinkTokenStream中

  boolean hasnext = source.incrementToken();

  while(hasnext){

    TermAttribute ta = source.getAttribute(TermAttribute.class);

    System.out.println(ta.term());

    hasnext = source.incrementToken();

  }

  System.out.println("---------------------------------------------");

  hasnext = sink.incrementToken();

  while(hasnext){

    TermAttribute ta = sink.getAttribute(TermAttribute.class);

    System.out.println(ta.term());

    hasnext = sink.incrementToken();

  }

}

结果为:

japan
will
always
balance
its
national
interests
between
china
and
america
---------------------------------------------
japan
china
america

 

6、不同的Analyzer就是组合不同的Tokenizer和TokenFilter得到最后的TokenStream

 

6.1、ChineseAnalyzer

public final TokenStream tokenStream(String fieldName, Reader reader) {

    //按字分词,并过滤停词,标点,英文

    TokenStream result = new ChineseTokenizer(reader);

    result = new ChineseFilter(result);

    return result;

}

举例:"This year, president Hu 科学发展观" 被分词为 "year","president","hu","科","学","发","展","观"

6.2、CJKAnalyzer

public final TokenStream tokenStream(String fieldName, Reader reader) {

    //每两个字组成一个词,并去除停词

    return new StopFilter(StopFilter.getEnablePositionIncrementsVersionDefault(matchVersion), new CJKTokenizer(reader), stopTable);

}

举例:"This year, president Hu 科学发展观" 被分词为"year","president","hu","科学","学发","发展","展观"。

6.3、PorterStemAnalyzer

public TokenStream tokenStream(String fieldName, Reader reader) {

    //将转为小写的token,利用porter算法进行stemming

    return new PorterStemFilter(new LowerCaseTokenizer(reader));

}

 

6.4、SmartChineseAnalyzer

public TokenStream tokenStream(String fieldName, Reader reader) {

    //先分句子

    TokenStream result = new SentenceTokenizer(reader);

    //句子中分词组

    result = new WordTokenFilter(result);

    //用porter算法进行stemming

    result = new PorterStemFilter(result);

    //去停词

    if (!stopWords.isEmpty()) {

      result = new StopFilter(StopFilter.getEnablePositionIncrementsVersionDefault(matchVersion), result, stopWords, false);

    }

    return result;

}

 

6.5、SnowballAnalyzer

public TokenStream tokenStream(String fieldName, Reader reader) {

    //使用标准的分词器

    TokenStream result = new StandardTokenizer(matchVersion, reader);

   //标准的过滤器 

    result = new StandardFilter(result);

   //转换为小写 

    result = new LowerCaseFilter(result);

    //去停词

    if (stopSet != null)

      result = new StopFilter(StopFilter.getEnablePositionIncrementsVersionDefault(matchVersion), result, stopSet);

    //根据设定的stemmer进行stemming

    result = new SnowballFilter(result, name);

    return result;

}

 

7、Lucene的标准分词器

7.1、StandardTokenizerImpl.jflex

和QueryParser类似,标准分词器也需要词法分析,在原来的版本中,也是用javacc,当前的版本中,使用的是jflex。

jflex也是一个词法及语法分析器的生成器,它主要包括三部分,由%%分隔:

  • 用户代码部分:多为package或者import
  • 选项及词法声明
  • 语法规则声明

用于生成标准分词器的flex文件尾StandardTokenizerImpl.jflex,如下:

 

import org.apache.lucene.analysis.Token;

import org.apache.lucene.analysis.tokenattributes.TermAttribute;

%% //以上是用户代码部分,以下是选项及词法声明

%class StandardTokenizerImpl //类名

%unicode

%integer //下面函数的返回值

%function getNextToken //进行词法及语法分析的函数

%pack

%char

%{ //此之间的代码之间拷贝到生成的java文件中

public static final int ALPHANUM          = StandardTokenizer.ALPHANUM;

public static final int APOSTROPHE        = StandardTokenizer.APOSTROPHE;

public static final int ACRONYM           = StandardTokenizer.ACRONYM;

public static final int COMPANY           = StandardTokenizer.COMPANY;

public static final int EMAIL             = StandardTokenizer.EMAIL;

public static final int HOST              = StandardTokenizer.HOST;

public static final int NUM               = StandardTokenizer.NUM;

public static final int CJ                = StandardTokenizer.CJ;

public static final int ACRONYM_DEP       = StandardTokenizer.ACRONYM_DEP;

public static final String [] TOKEN_TYPES = StandardTokenizer.TOKEN_TYPES;

public final int yychar()

{

    return yychar;

}

final void getText(Token t) {

  t.setTermBuffer(zzBuffer, zzStartRead, zzMarkedPos-zzStartRead);

}

final void getText(TermAttribute t) {

  t.setTermBuffer(zzBuffer, zzStartRead, zzMarkedPos-zzStartRead);

}

%}

THAI       = [\u0E00-\u0E59]

//一系列字母和数字的组合

ALPHANUM   = ({LETTER}|{THAI}|[:digit:])+

//省略符号,如you're

APOSTROPHE =  {ALPHA} ("'" {ALPHA})+

//缩写,如U.S.A.

ACRONYM    =  {LETTER} "." ({LETTER} ".")+

ACRONYM_DEP    = {ALPHANUM} "." ({ALPHANUM} ".")+

// 公司名称如AT&T,Excite@Home.

COMPANY    =  {ALPHA} ("&"|"@") {ALPHA}

// 邮箱地址

EMAIL =  {ALPHANUM} (("."|"-"|"_") {ALPHANUM})* "@" {ALPHANUM} (("."|"-") {ALPHANUM})+

// 主机名

HOST  =  {ALPHANUM} ((".") {ALPHANUM})+

NUM  = ({ALPHANUM} {P} {HAS_DIGIT}

           | {HAS_DIGIT} {P} {ALPHANUM}

           | {ALPHANUM} ({P} {HAS_DIGIT} {P} {ALPHANUM})+

           | {HAS_DIGIT} ({P} {ALPHANUM} {P} {HAS_DIGIT})+

           | {ALPHANUM} {P} {HAS_DIGIT} ({P} {ALPHANUM} {P} {HAS_DIGIT})+

           | {HAS_DIGIT} {P} {ALPHANUM} ({P} {HAS_DIGIT} {P} {ALPHANUM})+)

//标点

P  = ("_"|"-"|"/"|"."|",")

//至少包含一个数字的字符串

HAS_DIGIT  = ({LETTER}|[:digit:])* [:digit:] ({LETTER}|[:digit:])*

ALPHA  = ({LETTER})+

//所谓字符,即出去所有的非字符的ASCII及中日文。

LETTER = !(![:letter:]|{CJ})

//中文或者日文

CJ  = [\u3100-\u312f\u3040-\u309F\u30A0-\u30FF\u31F0-\u31FF\u3300-\u337f\u3400-\u4dbf\u4e00-\u9fff\uf900-\ufaff\uff65-\uff9f]

//空格

WHITESPACE = \r\n | [ \r\n\t\f]

%% //以下是语法规则部分,由于是分词器,因而不需要进行语法分析,则全部原样返回

{ALPHANUM}                                                     { return ALPHANUM; }

{APOSTROPHE}                                                   { return APOSTROPHE; }

{ACRONYM}                                                      { return ACRONYM; }

{COMPANY}                                                      { return COMPANY; }

{EMAIL}                                                        { return EMAIL; }

{HOST}                                                         { return HOST; }

{NUM}                                                          { return NUM; }

{CJ}                                                           { return CJ; }

{ACRONYM_DEP}                                                  { return ACRONYM_DEP; }

 

下面我们看下面的例子,来说明StandardTokenizerImpl的功能:

String s = "I'm Juexian, my email is forfuture1978@gmail.com. My ip address is 192.168.0.1, AT&T and I.B.M are all great companies.";

StringReader reader = new StringReader(s);

StandardTokenizerImpl impl = new StandardTokenizerImpl(reader);

while(impl.getNextToken() != StandardTokenizerImpl.YYEOF){

    TermAttributeImpl ta = new TermAttributeImpl();

    impl.getText(ta);

    System.out.println(ta.term());

}

结果为:

I'm
Juexian
my
email
is
forfuture1978@gmail.com
My
ip
address
is
192.168.0.1
AT&T
and
I.B.M
are
all
great
companies

 

7.2、StandardTokenizer

其有一个成员变量StandardTokenizerImpl scanner;

其incrementToken函数如下:

 

public final boolean incrementToken() throws IOException {

  clearAttributes();

  int posIncr = 1;

  while(true) {

    //用词法分析器得到下一个Token以及Token的类型

    int tokenType = scanner.getNextToken();

    if (tokenType == StandardTokenizerImpl.YYEOF) {

      return false;

    }

    if (scanner.yylength() <= maxTokenLength) {

      posIncrAtt.setPositionIncrement(posIncr);

      //得到Token文本

      scanner.getText(termAtt);

      final int start = scanner.yychar();

      offsetAtt.setOffset(correctOffset(start), correctOffset(start+termAtt.termLength()));

      //设置类型

      typeAtt.setType(StandardTokenizerImpl.TOKEN_TYPES[tokenType]);

      return true;

    } else

      posIncr++;

  }

}

 

7.3、StandardFilter

其incrementToken函数如下:

public final boolean incrementToken() throws java.io.IOException {

  if (!input.incrementToken()) {

    return false;

  }

  char[] buffer = termAtt.termBuffer();

  final int bufferLength = termAtt.termLength();

  final String type = typeAtt.type();

  //如果是省略符号,如He's,则去掉's

  if (type == APOSTROPHE_TYPE && bufferLength >= 2 &&

      buffer[bufferLength-2] == '\'' && (buffer[bufferLength-1] == 's' || buffer[bufferLength-1] == 'S')) {

    termAtt.setTermLength(bufferLength - 2);

  } else if (type == ACRONYM_TYPE) {

   //如果是缩略语I.B.M.,则去掉.

    int upto = 0;

    for(int i=0;i<bufferLength;i++) {

      char c = buffer[i];

      if (c != '.')

        buffer[upto++] = c;

    }

    termAtt.setTermLength(upto);

  }

  return true;

}

 

7.4、StandardAnalyzer

public TokenStream tokenStream(String fieldName, Reader reader) {

    //用词法分析器分词

    StandardTokenizer tokenStream = new StandardTokenizer(matchVersion, reader);

    tokenStream.setMaxTokenLength(maxTokenLength);

    //用标准过滤器过滤 

    TokenStream result = new StandardFilter(tokenStream);

    //转换为小写

    result = new LowerCaseFilter(result);

    //去停词 

    result = new StopFilter(enableStopPositionIncrements, result, stopSet);

    return result;

}

举例如下:

String s = "He's Juexian, His email is forfuture1978@gmail.com. He's an ip address 192.168.0.1, AT&T and I.B.M. are all great companies.";

StringReader reader = new StringReader(s);

StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);

TokenStream ts = analyzer.tokenStream("field", reader);

boolean hasnext = ts.incrementToken();

while(hasnext){

  TermAttribute ta = ts.getAttribute(TermAttribute.class);

  System.out.println(ta.term());

  hasnext = ts.incrementToken();

}

结果为:

he
juexian
his
email
forfuture1978@gmail.com
he
ip
address
192.168.0.1
at&t
ibm
all
great
companies

 

8、不同的域使用不同的分词器

8.1、PerFieldAnalyzerWrapper

有时候,我们想不同的域使用不同的分词器,则可以用PerFieldAnalyzerWrapper进行封装。

其有两个成员函数:

  • Analyzer defaultAnalyzer:即当域没有指定分词器的时候使用此分词器
  • Map<String,Analyzer> analyzerMap = new HashMap<String,Analyzer>():一个从域名到分词器的映射,将根据域名使用相应的分词器。

其TokenStream函数如下:

public TokenStream tokenStream(String fieldName, Reader reader) {

  Analyzer analyzer = analyzerMap.get(fieldName);

  if (analyzer == null) {

    analyzer = defaultAnalyzer;

  }

  return analyzer.tokenStream(fieldName, reader);

}

举例说明:

String s = "Hello World";
PerFieldAnalyzerWrapper analyzer = new PerFieldAnalyzerWrapper(new SimpleAnalyzer());
analyzer.addAnalyzer("f1", new KeywordAnalyzer());
analyzer.addAnalyzer("f2", new WhitespaceAnalyzer());

TokenStream ts = analyzer.reusableTokenStream("f1", new StringReader(s));
boolean hasnext = ts.incrementToken();
while(hasnext){
  TermAttribute ta = ts.getAttribute(TermAttribute.class);
  System.out.println(ta.term());
  hasnext = ts.incrementToken();
}

System.out.println("---------------------------------------------");

ts = analyzer.reusableTokenStream("f2", new StringReader(s));
hasnext = ts.incrementToken();
while(hasnext){
  TermAttribute ta = ts.getAttribute(TermAttribute.class);
  System.out.println(ta.term());
  hasnext = ts.incrementToken();
}

System.out.println("---------------------------------------------");

ts = analyzer.reusableTokenStream("none", new StringReader(s));
hasnext = ts.incrementToken();
while(hasnext){
  TermAttribute ta = ts.getAttribute(TermAttribute.class);
  System.out.println(ta.term());
  hasnext = ts.incrementToken();
}

结果为:

Hello World
---------------------------------------------
Hello
World
---------------------------------------------
hello
world

转:http://forfuture1978.iteye.com/blog/685514

分享到:
评论

相关推荐

    IKAnalyzer中文分词支持lucene6.5.0版本

    由于林良益先生在2012之后未对IKAnalyzer进行更新,后续lucene分词接口发生变化,导致不可使用,所以此jar包支持lucene6.0以上版本

    lucene 所有jar包 包含IKAnalyzer分词器

    《Lucene分词技术与IKAnalyzer详解》 在信息技术领域,搜索引擎是不可或缺的一部分,而Lucene作为Apache软件基金会的一个开放源代码项目,是Java语言开发的全文检索引擎库,为构建高效、可扩展的信息检索应用提供了...

    c# 中文分词 LUCENE IKAnalyzer

    标题中的"C# 中文分词 LUCENE IKAnalyzer"是指使用C#语言实现的一个中文分词工具,它基于开源全文检索引擎Lucene,并且采用了IKAnalyzer(智能汉字分词系统)的Java版本进行移植。Lucene是一个强大的、高性能的信息...

    IKAnalyzer 支持高版本最新Lucene 5.x、6.x、7.x

    - Lucene 6.x进一步优化了内存使用,增强了查询性能,并提供了更丰富的分析器选项,如标准分析器的升级,使得IKAnalyzer可以更好地与之配合。 - Lucene 7.x带来了更多性能提升,例如更优秀的倒排索引结构,以及对...

    IKAnalyzer中文分词器支持Lucene6.0以上

    提示:IKAnalyzer中文分词器支持Lucene6.0以上,IKAnalyzer中文分词器支持Lucene6.0以上。

    Lucene中文分词器组件

    2. **配置与初始化**:根据项目需求,配置分词器的参数,如自定义词典、分词模式等,然后在Lucene的Analyzer中实例化该分词器。 3. **索引建立**:在创建索引时,使用配置好的分词器对中文文本进行分词,生成分词后...

    Lucene4.7+IK Analyzer中文分词入门教程

    在这个入门教程中,我们将使用Lucene 4.7版本,结合IK Analyzer,一个专门针对中文分词的开源分析器,来学习如何构建一个简单的搜索引擎。 首先,你需要下载Lucene 4.7和IK Analyzer 2012-FF Hotfix 1。Lucene的...

    高版本Lucene的IK分词器

    maven库中现有的ik分词器只支持低版本的Lucene,想要支持高版本的Lucene,需要重写老版本ik分词器里的部分代码. 下载代码片段后导入项目,在创建分词器的时候把new IKAnalyzer替换为 new IKAnalyzer5x即可。

    lucene.NET 中文分词

    2. **配置分词器**:在Lucene.NET的索引创建阶段,需要配置Analyzer类,指定使用特定的分词器。例如,使用IK Analyzer可以创建`IKAnalyzer analyzer = new IKAnalyzer();`。 3. **字段分析**:在创建Document对象时...

    Lucene4.0 IK分词器使用pdf

    ### Lucene4.0 IK分词器使用概览 #### IKAnalyzer:中文分词利器 IKAnalyzer是一款基于Java开发的开源中文分词工具包,自2006年首次发布以来,历经多个版本的迭代,已成为业界广泛认可的中文分词解决方案。其最初...

    拼音分词 Pinyin4j+pinyinAnalyzer+lucene-analyzers

    pinyinAnalyzer是Lucene的一个分析器,它利用了Pinyin4j的功能,能够将输入的中文文本分词并转化为拼音形式,以便于Lucene这样的全文搜索引擎进行索引和查询。而lucene-analyzers则是Lucene的一系列分析器集合,包含...

    lucene3.5 IKAnalyzer3.2.5 实例中文分词通过

    lucene3.5 IKAnalyzer3.2.5 实例中文分词通过,目前在网上找的lucene 和IKAnalyzer 的最新版本测试通过。内含:示例代码,以及最新jar包。 lucene lucene3.5 IKAnalyzer IKAnalyzer3.2.5 jar 中文 分词

    ikanalyzer中文分词支持lucene7.1.0

    ikanalyzer中文分词支持lucene7.1.0是一个针对Lucene搜索引擎的中文分词扩展,由林良益先生开发,旨在提供高效、精准的中文词汇拆解功能。Lucene是一个开源全文检索库,它提供了索引和搜索文本的强大工具。然而,...

    分词lucene

    中文分词器: 1. http://code.google.com/p/ik-analyzer/ (IK_Analyzer_2012FF_hf1.zip) 2. https://code.google.com/p/mmseg4j/ (mmseg4j-1.9.1.v20130120-SNAPSHOT.zip) 查看分词库: ...

    lucene Analyzer 庖丁解牛 中文分词

    《Lucene Analyzer剖析:中文分词的奥秘》 在信息检索领域,Lucene作为一款强大的全文搜索引擎库,被广泛应用于各种系统中。其核心功能之一就是对输入文本进行高效精准的分词处理,以便进行后续的索引和查询操作。...

    Lucene的IK Analyzer 3.0 中文分词器 全解

    IK Analyzer 3.0 是一个专为 Lucene 设计的开源中文分词器,它基于 Java 开发,提供轻量级且高效的分词功能。自2006年12月发布1.0版以来,IK Analyzer 经历了多次升级,3.0版已演变为独立于 Lucene 的通用分词组件,...

    Lucene5学习之自定义同义词分词器简单示例

    总之,自定义Lucene分词器,尤其是添加同义词处理,是一项增强搜索质量和用户体验的关键技术。通过这个简单的示例,我们可以了解如何结合源码和工具来实现这一目标。在阅读给定的博文链接(已提供但不可访问)时,你...

    实现lucene的Analyzer接口的一个分词器

    导入: import net.teamhot.lucene.ThesaurusAnalyzer; import org.apache.lucene.analysis.Analyzer; 实例化: Analyzer analyzer = new ThesaurusAnalyzer();

    IKAnalyzer和Lucene分词工具下载地址+使用方法

    System.out.println("当前使用的分词器:" + analyzer.getClass().getSimpleName()); TokenStream tokenStream = analyzer.tokenStream("content", new StringReader(keyWord)); tokenStream.addAttribute...

    lucene第一步---5.中文分词IKAnalyzer和高亮highlighter的使用

    中文分词IKAnalyzer和高亮highlighter的使用”指出,这个主题将探讨如何在Lucene中应用IKAnalyzer进行中文分词,以及如何使用高亮器(highlighter)来突出搜索结果中的关键词。Lucene是Apache软件基金会的一个开放源...

Global site tag (gtag.js) - Google Analytics