`
deng131
  • 浏览: 672614 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

算法时间复杂度计算

阅读更多
1)时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度
在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如 T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),对数阶O(log(2)n),线性阶O(n),
线性对数阶O(nlog(2)n),平方阶O(n^2),立方阶O(n^3),...,
k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
(3)算法的时间复杂度
若要比较不同的算法的时间效率,受限要确定一个度量标准,最直接的办法就是将计算法转化为程序,在计算机上运行,通过计算机内部的计时
功能获得精确的时间,然后进行比较。但该方法受计算机的硬件、软件等因素的影响,会掩盖算法本身的优劣,所以一般采用事先分析估算的算法,
即撇开计算机软硬件等因素,只考虑问题的规模(一般用用自然数n表示),认为一个特定的算法的时间复杂度,只采取于问题的规模,或者说它是
问题的规模的函数。
为了方便比较,通常的做法是,从算法选取一种对于所研究的问题(或算法模型)来说是基本运算的操作,以其重复执行的次数作为评价算法时间
复杂度的标准。该基本操作多数情况下是由算法最深层环内的语句表示的,基本操作的执行次数实际上就是相应语句的执行次数。
一般 T(n)=O(f(n))
O(1)<O(log2n)<O(n)<O(n log2 n)<O(n^2)<O(n^3)<O(2^n)所以要选择时间复杂度量级低的算法。

时间复杂度  1. 算法复杂度分为 时间复杂度和空间复杂度。
  作用: 时间复杂度是度量算法执行的时间长短;而空间复杂度是度量算法所需存储空间的大小。
  2. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
  分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
  3. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,在找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度 T(n)=O(f(n))
  例:算法:
  for(i=1;i<=n;++i)
  {
   for(j=1;j<=n;++j)
  {
  c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方 次
  for(k=1;k<=n;++k)
  c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方 次
  }
  }
  则有 T(n)= n的平方+n的三次方,根据上面空号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
  则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c
  则该算法的 时间复杂度:T(n)=O(n的三次方)



定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立 f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“ 大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;                   

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.  
    for (i=1;i<n;i++)
    {
        y=y+1;         ①  
        for (j=0;j<=(2*n);j++)   
           x++;        ②     
    }        
解: 语句1的频度是n-1
          语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          该程序的时间复杂度T(n)=O(n^2).        

O(n)      
                                                     
2.3.
    a=0;
    b=1;                      ①
    for (i=1;i<=n;i++) ②
    { 
       s=a+b;    ③
       b=a;     ④ 
       a=s;     ⑤
    }
解: 语句1的频度:2,       
           语句2的频度: n,       
          语句3的频度: n-1,       
          语句4的频度:n-1,   
          语句5的频度:n-1,                                 
          T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                
O(log2n )

2.4.
     i=1;       ①
    while (i<=n)
       i=i*2; ②
解: 语句1的频度是1, 
          设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n   
          取最大值f(n)= log2n,
          T(n)=O(log2n )

O(n^3)

2.5.
    for(i=0;i<n;i++)
    { 
       for(j=0;j<i;j++) 
       {
          for(k=0;k<j;k++)
             x=x+2; 
       }
    }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
                                 

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:


访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。

本文来源:http://blog.csdn.net/comicray/archive/2009/08/22/4472580.aspx
分享到:
评论

相关推荐

    关于算法时间复杂度的计算

    算法时间复杂度的计算 算法时间复杂度的计算是计算机科学中一个非常重要的概念,它描述了算法执行时间随着输入规模的变化而增长的速度。时间复杂度通常用大 O 记法表示,即 O(f(n)),其中 f(n) 是问题规模 n 的函数...

    算法时间复杂度

    计算时间复杂度主要关注算法中最基本的操作(如比较、赋值等),并忽略非基本操作和常数项的影响。具体步骤包括: - 确定基本操作:找出算法中重复执行次数最多的操作。 - 计算基本操作的执行次数:分析算法流程,...

    算法时间复杂度的计算方法

    算法时间复杂度的计算方法 时间复杂度是衡量算法性能的重要指标,它描述了算法执行时间与问题规模之间的关系。时间复杂度是算法的渐近性质,它定义了算法的执行时间与问题规模之间的关系。 时间复杂度的计算方法...

    平衡二叉树时间复杂度计算1

    "平衡二叉树时间复杂度计算1" 在计算机科学中,平衡二叉树是一种特殊的二叉树数据结构,它的时间复杂度计算是非常重要的。下面我们将详细介绍平衡二叉树的时间复杂度计算。 首先,让我们了解什么是平衡二叉树。...

    时间复杂度的几种计算方法

    时间复杂度的几种计算方法 时间复杂度是算法优劣的重要指标,是数据结构的重要理论基础,是学习和教学过程中贯穿始终的主要线索。...理解时间复杂度的概念和计算方法,对算法的优化和评估至关重要。

    算法 时间复杂度 空间复杂度 经典

    ### 算法的时间复杂度与...通过上述内容,我们可以了解到算法的时间复杂度与空间复杂度是如何定义的,以及如何计算不同类型的算法的时间与空间复杂度。这对于评估算法的效率至关重要,有助于选择最适合特定问题的算法。

    复杂度计算(matlab)

    ### 复杂度计算在MATLAB中的应用 #### 核心知识点 1. **复杂度的概念**:在信号处理领域,复杂度通常被用来衡量一个信号或者时间序列的信息含量、结构复杂性等特性。它可以帮助我们理解信号内部的规律性和随机性的...

    算法复杂度计算方法

    ### 算法复杂度计算方法 #### 一、时间复杂度 时间复杂度是用来评估算法执行速度的一个重要指标,通常用于衡量算法随输入数据规模(通常标记为n)的增长趋势。 ##### 1. 时间频度 - **定义**:算法执行过程中基本...

    时间复杂度计算练习.zip

    4. **递归算法的时间复杂度**:讨论递归算法的时间复杂度计算,如斐波那契数列、快速排序等。 5. **案例分析**:提供具体的代码示例,分析其时间复杂度,如冒泡排序、选择排序、插入排序等。 6. **复杂度分析技巧**...

    分治法与时间复杂度计算

    了解和掌握分治法及其时间复杂度计算,能帮助我们设计出更高效的算法,解决大规模数据处理问题。通过阅读《分治法与时间复杂度计算.pdf》这份文档,你将深入理解这些概念,并能够运用到实际编程中去。

    NOIP普及组 提高组 CSP-J CSP-S初赛 算法的时间复杂度部分题目(2023.09.15)C.pdf

    总的来说,这些题目涉及到的基础知识点包括稳定排序、时间复杂度计算、主定理的应用以及斐波那契数列的特性。通过解答这些题目,参赛者可以深入理解算法的时间复杂度分析,并提升他们的算法设计能力。在实际编程竞赛...

    算法设计与分析:05 算法分析与问题的计算复杂度.pdf

    时间复杂度衡量了算法执行的时间,空间复杂度衡量了算法占用的存储空间。 三、时间复杂度 时间复杂度是算法执行的时间,它衡量了算法执行的速度。时间复杂度可以使用大O符号表示,例如O(n)、O(n^2)等。时间复杂度...

    关于递归算法时间复杂度分析的探讨.pdf

    关于递归算法时间复杂度分析的探讨,是一个深入理解算法效率和优化的关键议题。递归,作为解决问题的一种强大工具,其本质是将复杂问题分解为更简单的子问题,通过求解这些子问题来达到最终解决方案的目的。然而,...

    算法时间复杂度的计算.pdf

    计算时间复杂度的基本步骤是: 1. 计算出基本操作的执行次数 T(n) 2. 计算出 T(n) 的数量级 3. 用大 O 来表示时间复杂度 在计算时间复杂度时,需要注意以下几点: * 忽略常量、低次幂和最高次幂的系数 * 只考虑最...

    算法的时间复杂度分析.pdf

    在算法设计中,准确计算时间复杂度对于评估算法的效率至关重要。《算法的时间复杂度分析》中提出了一些计算时间复杂度的方法: ##### 4.1 直接计算法 直接计算法适用于可以直接计算出语句频度的情况。例如,求两个...

    信息学奥赛算法时间复杂度和空间复杂度计算

    在信息学奥赛中,算法的时间复杂度和空间复杂度是衡量算法效率的重要指标,尤其对于青少年编程者来说,理解并掌握这两点至关重要。算法效率分析主要包括时间效率和空间效率,它们分别对应于时间复杂度和空间复杂度的...

    算法时间复杂度的实验测试.zip_堆排序;算法时间复杂度_时间复杂度_胡书晗

    在计算机科学领域,算法的时间复杂度是对算法运行所需计算工作量的度量,它反映了算法执行效率与输入数据规模之间的关系。本实验测试的主题聚焦于堆排序算法的时间复杂度分析,由胡书晗进行研究。堆排序是一种基于...

    窗口无关均值滤波器,大大减少计算复杂度

    窗口无关均值滤波器,大大减少计算复杂度

    c++时间与空间复杂度计算

    本文主要介绍C++中算法的时间复杂度与空间复杂度的计算方法,详细阐述了复杂度分析中的一些专业术语和概念,并给出了一些常见的时间复杂度的示例和如何进行算法复杂度的判断和改进。 时间复杂度是衡量算法运行时间...

Global site tag (gtag.js) - Google Analytics