- 浏览: 1023200 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (529)
- 服务器 (8)
- jsp (1)
- java (6)
- AIX (1)
- solaris (3)
- linux学习 (53)
- javaScript (2)
- hibernate (1)
- 数据库 (74)
- sql语句 (8)
- oracle 学习 (75)
- oracle 案例 (42)
- oracle 管理 (42)
- Oracle RAC (27)
- oracle data guard (12)
- oracle 参数讲解 (14)
- Oracle 字符集 (8)
- oracle性能调优 (24)
- oracle备份与恢复 (12)
- oracle Tablespace (9)
- oracle性能诊断艺术 (1)
- oracle 11g学习 (5)
- oracle streams (1)
- oracle upgrade and downgrade (4)
- db2学习 (13)
- db2命令学习 (2)
- mysql (28)
- sql server (30)
- sql server 2008 (0)
- 工具 (10)
- 操作系统 (3)
- c++ (1)
- stock (1)
- 生活 (5)
- HADOOP (2)
最新评论
-
massjcy:
...
如何将ubuntu文件夹中文名改为英文 -
skypiea:
谢谢。。。
终于解决了。。。
Oracle 10.2.0.4(5)EM不能启动的解决方案(Patch 8350262) -
qwe_rt:
引用vi /etc/sysconfig/network 请问 ...
Linux操作系统下配置静态IP上网 -
liuqiang:
sudo killall -9 apache2
ps 和 kill 命令详解 -
dazuiba:
引用*绝杀 kill -9 PID 当使用此命令时,一定要通过 ...
ps 和 kill 命令详解
Applies to:
Oracle Server - Enterprise Edition - Version: 8.0.3.0 to 11.2.0.2 - Release: 8.0.3 to 11.2
Information in this document applies to any platform.
This article outlines the meaning of the Clustering Factor Statistic
This article provides developers and DBAs more in depth information regarding the Clustering Factor Statistic
Clustering Factor is statistics collected for use by the Cost Based Optimizer (CBO) and is a measure of the 'ordered-ness' of an index in comparison to the table that it is based upon. It is used as an indicator for computing the estimated cost of the table lookup following an index access.
The Clustering Factor records the number of data blocks that will be accessed when scanning an index.
Clustering factor values can be seen in the following views:
- ALL|DBA|USER_INDEXES.
It can be set also in:
- ALL|DBA|USER_IND_PARTITIONS
- ALL|DBA|USER_IND_SUBPARTITIONS
when the indexes are partitioned.
For further details on Clustering Factor see:
Oracle® Database Concepts
11g Release 2 (11.2)
Part Number E10713-05
Chapter 3 Indexes and Index-Organized Tables
It is calculated as follows:
- The index is scanned in order.
- The block portion of the rowid pointed at by the current indexed value is compared with that pointed at by the previous indexed value. This is achieved by comparing adjacent rowids in the index leaf block (the blocks themselves do not need to be visited).
- If these rowids are pointing at different blocks then a counter is incremented.
- This is continued throughout the whole index
- The resultant count is then stored.
If the count is close to the number of blocks in the table then the index is well ordered. This is true because the counter only gets incremented when the actual data is found in a different block from the last piece of row data. What this means is that when an index block is read, the table lookups required based on that block are likely to be in the same table blocks. So, the lower the Clustering Factor the less I/O is likely to be used by the statement and so the optimizer is more likely to choose that index.
If the count is close to the number of rows in the table then the index is less well ordered. In this case adjacent index entries do not tend to point to the same block in the table, thus more block reads are likely to be required. An index with a higher clustering factor is more likely to have to revisit Data blocks than with a lower Clustering factor .
The clustering factor can be used by the optimizer to adjust the potential number of blocks that will be accessed by a particular predicate or query. This is useful for determining the number of base table blocks that will be visited when accessed via the index.
The clustering factor is effectively a count of the number of data blocks visited as the result of an index lookup. Multiplying the clustering factor by the selectivity will give the cost of the operation. It is predominately used to calculate costs for index range scans.
- How can Clustering Factor be Reduced
The only method to affect the clustering factor is to sort and then store the rows in the table in the same order as in they appear in the index. Exporting rows and putting them back in the same order that they appeared originally will have no affect. Remember that ordering the rows to suit one index may have detrimental effects on the choice of other indexes.
发表评论
-
sqlldr总结参数介绍
2012-06-28 14:29 22832有效的关键字: userid -- ORACLE use ... -
11gR2新特性:STANDBY_MAX_DATA_DELAY
2011-12-27 11:18 1221Active Data Guard 是 Oracle 11g ... -
Linux下用OCCI或OCI连接Oracle
2011-07-26 12:00 2907首先,去oracle官网下载C ... -
Oracle Mutex实现机制
2011-05-18 23:43 1072我们都知道Latch是Oracle ... -
local_listener参数作用
2011-05-10 17:19 1931pmon只会动态注册port等于1521的监听,否则 ... -
oracle伪列 rowid和rownum
2011-03-23 10:00 3542整理ROWID一 一,什么是伪列RowID?1,首先是一种数 ... -
Oracle10gR2 主备自动切换之客户端Failover配置
2011-01-20 10:32 9541. 主库检查和设置假设新增的服务名为ORCL_TAF.LK. ... -
Oracle10g配置Dataguard的相关参数解释
2011-01-20 10:24 1271参考自 http://space.itpub.ne ... -
wrap加密oracle包
2011-01-19 11:52 1299大家都知道oracle的很多系统包是没法看它的源码的,orac ... -
利用hcheck检查数据字典一致性状态
2011-01-17 17:42 1820利用hcheck可以检查oracle数据字典的一致性状态,主要 ... -
插入相同的数据量普通表和临时表产生的redo对比
2011-01-17 16:08 989往临时表里插入相同量 ... -
Database Link与GLOBAL_NAMES参数
2011-01-12 13:36 1034当GLOBAL_NAMES参数设置为TRUE时,使用DATAB ... -
Oracle Streams学习二(清除流配置)
2011-01-09 23:34 1183在完成streams部署之后,如果需要重新配置或舍弃配置,可以 ... -
red hat enterprise 下完全删除oracle 数据库
2011-01-05 01:28 1760步骤 1 以oracle用户登录主、备节点。步骤 2 ... -
Oracle常用dump命令
2010-12-20 00:31 836Oracle常用dump命令,记录一下备查。 一.M ... -
oracle执行DML(事物过程)的深入研究(二)
2010-12-14 15:02 1542接上一节的 oracle执行DML(事物过程)的深入研究(一) ... -
oracle执行DML(事物过程)的深入研究(一)
2010-12-14 10:26 2805用户所执行 DML (即执行事务)操作在 Oracle 内部按 ... -
Oracle基本数据类型存储格式研究(二)—数字类型
2010-12-14 00:35 1474数字类型包含number,intege ... -
Oracle基本数据类型存储格式研究(一)—字符类型
2010-12-13 23:32 11741.char char是定长字符型,内部代码是:96,最多可 ... -
关于oracle rowid的一些内容 -- 转载
2010-12-13 15:47 784本文讨论的是关于oracle ...
相关推荐
1. 因子选择与特征工程:通过对数据集中各种因子的历史回报进行分析,可以使用特征选择算法(如主成分分析PCA、互信息法等)来确定哪些因子对预测未来回报最为重要。 2. 预测模型构建:基于选定的特征,可以训练...
kmeans聚类算法代码.zipkmeans聚类算法代码.zipkmeans聚类算法代码.zipkmeans聚类算法代码.zipkmeans聚类算法代码.zipkmeans聚类算法代码.zipkmeans聚类算法代码.zipkmeans聚类算法代码.zipkmeans聚类算法代码....
博客中用于k-means聚类数据集R3.txt
基于matlab实现的模糊聚类分析项目源码.zip个人经导师指导并认可通过的98分课程设计项目,主要针对计算机相关专业的正在做课程设计、期末大作业的学生和需要项目实战练习的学习者。 基于matlab实现的模糊聚类分析...
在本压缩包“Matlab-使用Matlab实现的聚类算法-Clustering.zip”中,包含的是关于如何在MATLAB环境中实现聚类算法的详细资料。MATLAB是一种强大的编程环境,尤其适合数值计算和数据分析,而聚类算法是数据挖掘中的...
聚类代码.R.r
聚类分析.R.r
聚类算法聚类算法.ppt
聚类算法资源1.zip
kmeans聚类算法matlab代码.zip kmeans聚类算法matlab代码.zip
《K-均值聚类算法详解及实验报告》 K-均值聚类算法,作为非监督学习领域中的一种常用方法,旨在通过无标签数据自我组织,形成具有一定相似性的类别。该算法简单易懂,应用广泛,尤其在数据挖掘、市场细分、图像分割...
转载 聚类算法综述 1.doc
聚类算法概述, K-Means 聚类算法详解.docx 聚类算法概述, K-Means 聚类算法详解.docx 聚类算法概述, K-Means 聚类算法详解.docx 聚类算法概述, K-Means 聚类算法详解.docx 聚类算法概述, K-Means 聚类算法详解....
基于R语言因子分析和聚类分...的市政建设水平综合评价研究_焦子涵.caj
1.版本:matlab2019a,内含运行结果,不会运行可私信 2.领域:【数据聚类】 3.内容:Matlab基于GG聚类以及改进的GG聚类实现数据聚类.zip 4.适合人群:本科,硕士等教研学习使用
聚类分析(Clustering Analysis)是一种常用的无监督学习方法,旨在将样品或指标变量按其特性进行分类,发现数据中的内在结构信息。该方法广泛应用于复杂网络分析、图像分析、文本处理、有损编码技术、顾客行为分析...
Web日志挖掘中的用户聚类与URL聚类.pdf
聚类分析FCM代码.txt
聚类分析算法解析.doc