`

SQL SERVER性能优化综述(很好的总结,不要错过哦)第3/3页

阅读更多

7、
尽量使用索引
建立索引后,并不是每个查询都会使用索引,在使用索引的情况下,索引的使用效率也会有很大的差别。只要我们在查询语句中没有强制指定索引,索引的选择和使用方法是SQLSERVER的优化器自动作的选择,而它选择的根据是查询语句的条件以及相关表的统计信息,这就要求我们在写SQL语句的时候尽量使得优化器可以使用索引。
为了使得优化器能高效使用索引,写语句的时候应该注意:
A、不要对索引字段进行运算,而要想办法做变换,比如
SELECT ID FROM T WHERE NUM/2=100
应改为:
SELECT ID FROM T WHERE NUM=100*2
SELECT ID FROM T WHERE NUM/2=NUM1
如果NUM有索引应改为:
SELECT ID FROM T WHERE NUM=NUM1*2
如果NUM1有索引则不应该改。
发现过这样的语句:
SELECT 年,月,金额 FROM 结余表
WHERE 100*年+月=2007*100+10
应该改为:
SELECT 年,月,金额 FROM 结余表WHERE 年=2007 AND
月=10
B、
不要对索引字段进行格式转换
日期字段的例子:
WHERE CONVERT(VARCHAR(10), 日期字段,120)='2008-08-15'
应该改为
WHERE日期字段〉='2008-08-15'
AND 日期字段<'2008-08-16'
ISNULL转换的例子:
WHERE ISNULL(字段,'')<>''应改为:WHERE字段<>''
WHERE ISNULL(字段,'')=''不应修改
WHERE ISNULL(字段,'F') ='T'应改为: WHERE字段='T'
WHERE ISNULL(字段,'F')<>'T'不应修改
C、
不要对索引字段使用函数
WHERE LEFT(NAME, 3)='ABC' 或者WHERE SUBSTRING(NAME,1, 3)='ABC'
应改为:
WHERE NAME LIKE 'ABC%'
日期查询的例子:
WHERE DATEDIFF(DAY, 日期,'2005-11-30')=0应改为:WHERE 日期 >='2005-11-30' AND 日期 <'2005-12-1‘
WHERE DATEDIFF(DAY, 日期,'2005-11-30')>0应改为:WHERE 日期 <'2005-11-30‘
WHERE DATEDIFF(DAY, 日期,'2005-11-30')>=0应改为:WHERE 日期 <'2005-12-01‘
WHERE DATEDIFF(DAY, 日期,'2005-11-30')<0应改为:WHERE 日期>='2005-12-01‘
WHERE DATEDIFF(DAY, 日期,'2005-11-30')<=0应改为:WHERE 日期>='2005-11-30‘
D、不要对索引字段进行多字段连接
比如:
WHERE FAME+ '.'+LNAME=‘HAIWEI.YANG'
应改为:
WHERE FNAME=‘HAIWEI' AND LNAME=‘YANG'
8、
注意连接条件的写法
多表连接的连接条件对索引的选择有着重要的意义,所以我们在写连接条件条件的时候需要特别的注意。
A、多表连接的时候,连接条件必须写全,宁可重复,不要缺漏。
B、
连接条件尽量使用聚集索引
C、
注意ON部分条件和WHERE部分条件的区别
9、
其他需要注意的地方
经验表明,问题发现的越早解决的成本越低,很多性能问题可以在编码阶段就发现,为了提早发现性能问题,需要注意:
A、程序员注意、关心各表的数据量。
B、
编码过程和单元测试过程尽量用数据量较大的数据库测试,最好能用实际数据测试。
C、
每个SQL语句尽量简单
D、不要频繁更新有触发器的表的数据
E、
注意数据库函数的限制以及其性能
10、
学会分辩SQL语句的优劣
自己分辨SQL语句的优劣非常重要,只有自己能分辨优劣才能写出高效的语句。
A、
查看SQL语句的执行计划,可以在查询分析其使用CTRL+L图形化的显示执行计划,一般应该注意百分比最大的几个图形的属性,把鼠标移动到其上面会显示这个图形的属性,需要注意预计成本的数据,也要注意其标题,一般都是CLUSTERED INDEX SEEK 、INDEX SEEK 、CLUSTERED INDEX SCAN 、INDEX SCAN 、TABLE SCAN等,其中出现SCAN说明语句有优化的余地。也可以用语句
SET SHOWPLAN_ALL ON
要执行的语句
SET SHOWPLAN_ALL OFF
查看执行计划的文本详细信息。
B、
用事件探查器跟踪系统的运行,可疑跟踪到执行的语句,以及所用的时间,CPU用量以及I/O数据,从而分析语句的效率。
C、
可以用WINDOWS的系统性能检测器,关注CPU、I/O参数
四、 测试、试运行、维护阶段
测试的主要任务是发现并修改系统的问题,其中性能问题也是一个重要的方面。重点应该放在发现有性能问题的地方,并进行必要的优化。主要进行语句优化、索引优化等。
试运行和维护阶段是在实际的环境下运行系统,发现的问题范围更广,可能涉及操作系统、网络以及多用户并发环境出现的问题,其优化也扩展到操作系统、网络以及数据库物理存储的优化。
这个阶段的优花方法在这里不再展开,只说明下索引维护的方法:
A、
可以用DBCC DBREINDEX语句或者SQL SERVER维护计划设定定时进行索引重建,索引重建的目的是提高索引的效能。
B、
可以用语句UPDATE STATISTICS或者SQL SERVER维护计划设定定时进行索引统计信息的更新,其目的是使得统计信息更能反映实际情况,从而使得优化器选择更合适的索引。
C、
可以用DBCC CHECKDB或者DBCC CHECKTABLE语句检查数据库表和索引是否有问题,这两个语句也能修复一般的问题。
D、
五、网上资料中一些说法的个人不同意见
1、
“应尽量避免在 WHERE 子句中对字段进行 NULL 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
SELECT ID FROM T WHERE NUM IS NULL
可以在NUM上设置默认值0,确保表中NUM列没有NULL值,然后这样查询:
SELECT ID FROM T WHERE NUM=0”
个人意见:经过测试,IS NULL也是可以用INDEX SEEK查找的,0和NULL是不同概念的,以上说法的两个查询的意义和记录数是不同的。
2、
“应尽量避免在 WHERE 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。”
个人意见:经过测试,<>也是可以用INDEX SEEK查找的。
3、
“应尽量避免在 WHERE 子句中使用 OR 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
SELECT ID FROM T WHERE NUM=10 OR NUM=20
可以这样查询:
SELECT ID FROM T WHERE NUM=10
UNION ALL
SELECT ID FROM T WHERE NUM=20”
个人意见:主要对全表扫描的说法不赞同。
4、
“IN 和 NOT IN 也要慎用,否则会导致全表扫描,如:
SELECT ID FROM T WHERE NUM IN(1,2,3)
对于连续的数值,能用 BETWEEN 就不要用 IN 了:
SELECT ID FROM T WHERE NUM BETWEEN 1 AND 3”
个人意见:主要对全表扫描的说法不赞同。
5、
“如果在 WHERE 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
SELECT ID FROM T WHERE NUM=@NUM
可以改为强制查询使用索引:
SELECT ID FROM T WITH(INDEX(索引名)) WHERE NUM=@NUM
个人意见:关于局部变量的解释比较奇怪,使用参数如果会影响性能,那存储过程就该校除了,我坚持我上面对于强制索引的看法。
6、
“尽可能的使用 VARCHAR/NVARCHAR 代替 CHAR/NCHAR ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。”
个人意见:“在一个相对较小的字段内搜索效率显然要高些”显然是对的,但是字段的长短似乎不是由变不变长决定,而是业务本身决定。在SQLSERVER6.5或者之前版本,不定长字符串字段的比较速度比定长的字符串字段的比较速度慢很多,所以对于那些版本,我们都是推荐使用定长字段存储一些关键字段。而在2000版本,修改了不定长字符串字段的比较方法,与定长字段的比较速度差别不大了,这样为了方便,我们大量使用不定长字段。
7、
关于连接表的顺序或者条件的顺序的说法,经过测试,在SQL SERVER,这些顺序都是不影响性能的,这些说法可能是对ORACLE有效。

分享到:
评论

相关推荐

    SQL SERVER性能优化综述(很好的总结,不要错过哦)第1/3页

    总结来说,SQL Server性能优化是一个全生命周期的工程,需要在系统的分析、设计、实施和维护各个阶段都进行细致的规划和调整。每个阶段都有其特定的优化策略和关注点,只有将这些策略综合运用,才能构建出满足业务...

    MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测(含模型描述及示例代码)

    内容概要:本文档详细介绍了基于 MATLAB 实现的 LSTM-AdaBoost 时间序列预测模型,涵盖项目背景、目标、挑战、特点、应用领域以及模型架构和代码示例。随着大数据和AI的发展,时间序列预测变得至关重要。传统方法如 ARIMA 在复杂非线性序列中表现欠佳,因此引入了 LSTM 来捕捉长期依赖性。但 LSTM 存在易陷局部最优、对噪声鲁棒性差的问题,故加入 AdaBoost 提高模型准确性和鲁棒性。两者结合能更好应对非线性和长期依赖的数据,提供更稳定的预测。项目还展示了如何在 MATLAB 中具体实现模型的各个环节。 适用人群:对时间序列预测感兴趣的开发者、研究人员及学生,特别是有一定 MATLAB 编程经验和熟悉深度学习或机器学习基础知识的人群。 使用场景及目标:①适用于金融市场价格预测、气象预报、工业生产故障检测等多种需要时间序列分析的场合;②帮助使用者理解并掌握将LSTM与AdaBoost结合的实现细节及其在提高预测精度和抗噪方面的优势。 其他说明:尽管该模型有诸多优点,但仍存在训练时间长、计算成本高等挑战。文中提及通过优化数据预处理、调整超参数等方式改进性能。同时给出了完整的MATLAB代码实现,便于学习与复现。

    palkert_3ck_01_0918.pdf

    palkert_3ck_01_0918

    pepeljugoski_01_1106.pdf

    pepeljugoski_01_1106

    tatah_01_1107.pdf

    tatah_01_1107

    [AB PLC例程源码][MMS_046393]Motor Speed Reference.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    基于51的步进电机控制系统20250302

    题目:基于单片机的步进电机控制系统 模块: 主控:AT89C52RC 步进电机(ULN2003驱动) 按键(3个) 蓝牙(虚拟终端模拟) 功能: 1、可以通过蓝牙远程控制步进电机转动 2、可以通过按键实现手动与自动控制模式切换。 3、自动模式下,步进电机正转一圈,反转一圈,循环 4、手动模式下可以通过按键控制步进电机转动(顺时针和逆时针)

    [AB PLC例程源码][MMS_041234]Logix Fault Handler.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    [AB PLC例程源码][MMS_042348]Using an Ultra3000 as an Indexer on DeviceNet with a CompactLogix.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    智慧校园平台建设全流程详解:从需求到持续优化

    内容概要:本文详细介绍了建设智慧校园平台所需的六个关键步骤。首先通过需求分析深入了解并确定校方和使用者的具体需求;其次是规划设计阶段,依据所得需求制定全面的建设方案。再者是对现有系统的整合——系统集成,确保新旧平台之间的互操作性和数据一致性。培训支持帮助全校教职工和学生快速熟悉新平台,提高效率。实施试点确保系统逐步稳定部署。最后,强调持续改进的重要性,以适应技术和环境变化。通过这一系列有序的工作,可以使智慧校园建设更为科学高效,减少失败风险。 适用人群:教育领域的决策者和技术人员,包括负责信息化建设和运维的团队成员。 使用场景及目标:用于指导高校和其他各级各类学校规划和发展自身的数字校园生态链;目的是建立更加便捷高效的现代化管理模式和服务机制。 其他说明:智慧校园不仅仅是简单的IT设施升级或软件安装,它涉及到全校范围内的流程再造和创新改革。

    AI淘金实战手册:100+高收益变现案例解析

    该文档系统梳理了人工智能技术在商业场景中的落地路径,聚焦内容生产、电商运营、智能客服、数据分析等12个高潜力领域,提炼出100个可操作性变现模型。内容涵盖AI工具开发、API服务收费、垂直场景解决方案、数据增值服务等多元商业模式,每个思路均配备应用场景拆解、技术实现路径及收益测算框架。重点呈现低代码工具应用、现有平台流量复用、细分领域自动化改造三类轻量化启动方案,为创业者提供从技术选型到盈利闭环的全流程参考。

    palkert_3ck_02_0719.pdf

    palkert_3ck_02_0719

    2006-2023年 地级市-克鲁格曼专业化指数.zip

    克鲁格曼专业化指数,最初是由Krugman于1991年提出,用于反映地区间产业结构的差异,也被用来衡量两个地区间的专业化水平,因而又称地区间专业化指数。该指数的计算公式及其含义可以因应用背景和具体需求的不同而有所调整,但核心都是衡量地区间的产业结构差异或专业化程度。 指标 年份、城市、第一产业人数(first_industry1)、第二产业人数(second_industry1)、第三产业人数(third_industry1)、专业化指数(ksi)。

    [AB PLC例程源码][MMS_046305]R2FX.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    精品推荐-通信技术LTE干货资料合集(19份).zip

    精品推荐,通信技术LTE干货资料合集,19份。 LTE PCI网络规划工具.xlsx LTE-S1切换占比专题优化分析报告.docx LTE_TDD问题定位指导书-吞吐量篇.docx LTE三大常见指标优化指导书.xlsx LTE互操作邻区配置核查原则.docx LTE信令流程详解指导书.docx LTE切换问题定位指导一(定位思路和问题现象).docx LTE劣化小区优化指导手册.docx LTE容量优化高负荷小区优化指导书.docx LTE小区搜索过程学习.docx LTE小区级与邻区级切换参数说明.docx LTE差小区处理思路和步骤.docx LTE干扰日常分析介绍.docx LTE异频同频切换.docx LTE弱覆盖问题分析与优化.docx LTE网优电话面试问题-应答技巧.docx LTE网络切换优化.docx LTE高负荷小区容量优化指导书.docx LTE高铁优化之多频组网优化提升“用户感知,网络价值”.docx

    matlab程序代码项目案例:matlab程序代码项目案例matlab中Toolbox中带有的模型预测工具箱.zip

    matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    pepeljugoski_01_0508.pdf

    pepeljugoski_01_0508

    szczepanek_01_0308.pdf

    szczepanek_01_0308

    oif2007.384.01_IEEE.pdf

    oif2007.384.01_IEEE

    stone_3ck_01_0119.pdf

    stone_3ck_01_0119

Global site tag (gtag.js) - Google Analytics