当JVM(Java虚拟机)启动时,会形成由三个类加载器组成的初始类加载器层次结构:
bootstrap classloader
|
extension classloader
|
system classloader
bootstrap classloader -引导(也称为原始)类加载器,它负责加载Java的核心类。在Sun的JVM中,在执行java的命令中使用-Xbootclasspath选项或使用 - D选项指定sun.boot.class.path系统属性值可以指定附加的类。这个加载器的是非常特殊的,它实际上不是 java.lang.ClassLoader的子类,而是由JVM自身实现的。大家可以通过执行以下代码来获得bootstrap classloader加载了那些核心类库:
Java代码
URL[] urls=sun.misc.Launcher.getBootstrapClassPath().getURLs();
for (int i = 0; i < urls.length; i++) {
System.out.println(urls.toExternalForm());
}
在我的计算机上的结果为:
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/dom.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/sax.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xalan-2.3.1.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xercesImpl-2.0.0.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xml-apis.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xsltc.jar
file:/C:/j2sdk1.4.1_01/jre/lib/rt.jar
file:/C:/j2sdk1.4.1_01/jre/lib/i18n.jar
file:/C:/j2sdk1.4.1_01/jre/lib/sunrsasign.jar
file:/C:/j2sdk1.4.1_01/jre/lib/jsse.jar
file:/C:/j2sdk1.4.1_01/jre/lib/jce.jar
file:/C:/j2sdk1.4.1_01/jre/lib/charsets.jar
file:/C:/j2sdk1.4.1_01/jre/classes
这时大家知道了为什么我们不需要在系统属性CLASSPATH中指定这些类库了吧,因为JVM在启动的时候就自动加载它们了。
extension classloader -扩展类加载器,它负责加载JRE的扩展目录(JAVA_HOME/jre/lib/ext或者由java.ext.dirs系统属性指定的)中JAR的类包。这为引入除Java核心类以外的新功能提供了一个标准机制。因为默认的扩展目录对所有从同一个JRE中启动的JVM都是通用的,所以放入这个目录的 JAR类包对所有的JVM和system classloader都是可见的。在这个实例上调用方法getParent()总是返回空值null,因为引导加载器bootstrap classloader不是一个真正的ClassLoader实例。所以当大家执行以下代码时:
Java代码
System.out.println(System.getProperty("java.ext.dirs"));
ClassLoader extensionClassloader=ClassLoader.getSystemClassLoader().getParent();
System.out.println("the parent of extension classloader : "+extensionClassloader.getParent());
结果为:
C:\j2sdk1.4.1_01\jre\lib\ext
the parent of extension classloader : null
extension classloader是system classloader的parent,而bootstrap classloader是extension classloader的parent,但它不是一个实际的classloader,所以为null。
system classloader -系统(也称为应用)类加载器,它负责在JVM被启动时,加载来自在命令java中的-classpath或者java.class.path系统属性或者 CLASSPATH操作系统属性所指定的JAR类包和类路径。总能通过静态方法ClassLoader.getSystemClassLoader()找到该类加载器。如果没有特别指定,则用户自定义的任何类加载器都将该类加载器作为它的父加载器。执行以下代码即可获得:
System.out.println(System.getProperty("java.class.path"));
输出结果则为用户在系统属性里面设置的CLASSPATH。
classloader 加载类用的是全盘负责委托机制。所谓全盘负责,即是当一个classloader加载一个Class的时候,这个Class所依赖的和引用的所有 Class也由这个classloader负责载入,除非是显式的使用另外一个classloader载入;委托机制则是先让parent(父)类加载器 (而不是super,它与parent classloader类不是继承关系)寻找,只有在parent找不到的时候才从自己的类路径中去寻找。此外类加载还采用了cache机制,也就是如果 cache中保存了这个Class就直接返回它,如果没有才从文件中读取和转换成Class,并存入cache,这就是为什么我们修改了Class但是必须重新启动JVM才能生效的原因。
每个ClassLoader加载Class的过程是:
1.检测此Class是否载入过(即在cache中是否有此Class),如果有到8,如果没有到2
2.如果parent classloader不存在(没有parent,那parent一定是bootstrap classloader了),到4
3.请求parent classloader载入,如果成功到8,不成功到5
4.请求jvm从bootstrap classloader中载入,如果成功到8
5.寻找Class文件(从与此classloader相关的类路径中寻找)。如果找不到则到7.
6.从文件中载入Class,到8.
7.抛出ClassNotFoundException.
8.返回Class.
其中5.6步我们可以通过覆盖ClassLoader的findClass方法来实现自己的载入策略。甚至覆盖loadClass方法来实现自己的载入过程。
类加载器的顺序是:
先是bootstrap classloader,然后是extension classloader,最后才是system classloader。大家会发现加载的Class越是重要的越在靠前面。这样做的原因是出于安全性的考虑,试想如果system classloader“亲自”加载了一个具有破坏性的“java.lang.System”类的后果吧。这种委托机制保证了用户即使具有一个这样的类,也把它加入到了类路径中,但是它永远不会被载入,因为这个类总是由bootstrap classloader来加载的。大家可以执行一下以下的代码:
System.out.println(System.class.getClassLoader());
将会看到结果是null,这就表明java.lang.System是由bootstrap classloader加载的,因为bootstrap classloader不是一个真正的ClassLoader实例,而是由JVM实现的,正如前面已经说过的。
下面就让我们来看看JVM是如何来为我们来建立类加载器的结构的:
sun.misc.Launcher,顾名思义,当你执行java命令的时候,JVM会先使用bootstrap classloader载入并初始化一个Launcher,执行下来代码:
Java代码
System.out.println("the Launcher's classloader is "+sun.misc.Launcher.getLauncher().getClass().getClassLoader());
:
the Launcher's classloader is null (因为是用bootstrap classloader加载,所以class loader为null)
Launcher 会根据系统和命令设定初始化好class loader结构,JVM就用它来获得extension classloader和system classloader,并载入所有的需要载入的Class,最后执行java命令指定的带有静态的main方法的Class。extension classloader实际上是sun.misc.Launcher$ExtClassLoader类的一个实例,system classloader实际上是sun.misc.Launcher$AppClassLoader类的一个实例。并且都是 java.net.URLClassLoader的子类。
让我们来看看Launcher初试化的过程的部分代码。
Launcher的部分代码:
Java代码
public class Launcher {
public Launcher() {
ExtClassLoader extclassloader;
try {
//初始化extension classloader
extclassloader = ExtClassLoader.getExtClassLoader();
} catch(IOException ioexception) {
throw new InternalError("Could not create extension class loader");
}
try {
//初始化system classloader,parent是extension classloader
loader = AppClassLoader.getAppClassLoader(extclassloader);
} catch(IOException ioexception1) {
throw new InternalError("Could not create application class loader");
}
//将system classloader设置成当前线程的context classloader(将在后面加以介绍)
Thread.currentThread().setContextClassLoader(loader);
......
}
public ClassLoader getClassLoader() {
//返回system classloader
return loader;
}
}
extension classloader的部分代码:
Java代码
static class Launcher$ExtClassLoader extends URLClassLoader {
public static Launcher$ExtClassLoader getExtClassLoader()
throws IOException
{
File afile[] = getExtDirs();
return (Launcher$ExtClassLoader)AccessController.doPrivileged(new Launcher$1(afile));
}
private static File[] getExtDirs() {
//获得系统属性“java.ext.dirs”
String s = System.getProperty("java.ext.dirs");
File afile[];
if(s != null) {
StringTokenizer stringtokenizer = new StringTokenizer(s, File.pathSeparator);
int i = stringtokenizer.countTokens();
afile = new File;
for(int j = 0; j < i; j++)
afile[j] = new File(stringtokenizer.nextToken());
} else {
afile = new File[0];
}
return afile;
}
}
system classloader的部分代码:
Java代码
static class Launcher$AppClassLoader extends URLClassLoader
{
public static ClassLoader getAppClassLoader(ClassLoader classloader)
throws IOException
{
//获得系统属性“java.class.path”
String s = System.getProperty("java.class.path");
File afile[] = s != null ? Launcher.access$200(s) : new File[0];
return (Launcher$AppClassLoader)AccessController.doPrivileged(new Launcher$2(s, afile, classloader));
}
}
看了源代码大家就清楚了吧,extension classloader是使用系统属性“java.ext.dirs”设置类搜索路径的,并且没有parent。system classloader是使用系统属性“java.class.path”设置类搜索路径的,并且有一个parent classloader。Launcher初始化extension classloader,system classloader,并将system classloader设置成为context classloader,但是仅仅返回system classloader给JVM。
这里怎么又出来一个context classloader呢?它有什么用呢?我们在建立一个线程Thread的时候,可以为这个线程通过setContextClassLoader方法来指定一个合适的classloader作为这个线程的context classloader,当此线程运行的时候,我们可以通过getContextClassLoader方法来获得此context classloader,就可以用它来载入我们所需要的Class。默认的是system classloader。利用这个特性,我们可以“打破”classloader委托机制了,父classloader可以获得当前线程的context classloader,而这个context classloader可以是它的子classloader或者其他的classloader,那么父classloader就可以从其获得所需的 Class,这就打破了只能向父classloader请求的限制了。这个机制可以满足当我们的classpath是在运行时才确定,并由定制的 classloader加载的时候,由system classloader(即在jvm classpath中)加载的class可以通过context classloader获得定制的classloader并加载入特定的class(通常是抽象类和接口,定制的classloader中是其实现),例如web应用中的servlet就是用这种机制加载的.
好了,现在我们了解了classloader的结构和工作原理,那么我们如何实现在运行时的动态载入和更新呢?只要我们能够动态改变类搜索路径和清除classloader的cache中已经载入的Class就行了,有两个方案,一是我们继承一个classloader,覆盖loadclass方法,动态的寻找Class文件并使用defineClass方法来;另一个则非常简单实用,只要重新使用一个新的类搜索路径来new一个classloader就行了,这样即更新了类搜索路径以便来载入新的Class,也重新生成了一个空白的cache(当然,类搜索路径不一定必须更改)。噢,太好了,我们几乎不用做什么工作,java.netURLClassLoader正是一个符合我们要求的classloader!我们可以直接使用或者继承它就可以了!
这是j2se1.4 API的doc中URLClassLoader的两个构造器的描述:
URLClassLoader(URL[] urls)
Constructs a new URLClassLoader for the specified URLs using the default delegation parent ClassLoader.
URLClassLoader(URL[] urls, ClassLoader parent)
Constructs a new URLClassLoader for the given URLs.
其中URL[] urls就是我们要设置的类搜索路径,parent就是这个classloader的parent classloader,默认的是system classloader。
好,现在我们能够动态的载入Class了,这样我们就可以利用newInstance方法来获得一个Object。但我们如何将此Object造型呢?可以将此Object造型成它本身的Class吗?
首先让我们来分析一下java源文件的编译,运行吧!javac命令是调用“JAVA_HOME/lib/tools.jar”中的“com.sun.tools.javac.Main”的compile方法来编译:
Java代码
public static int compile(String as[]);
public static int compile(String as[], PrintWriter printwriter);
返回0表示编译成功,字符串数组as则是我们用javac命令编译时的参数,以空格划分。例如:
javac -classpath c:\foo\bar.jar;. -d c:\ c:\Some.java
则字符串数组as为{"-classpath","c:\\foo\\bar.jar;.","-d","c:\\","c:\\Some.java"},如果带有PrintWriter参数,则会把编译信息出到这个指定的printWriter中。默认的输出是System.err。
其中 Main是由JVM使用Launcher初始化的system classloader载入的,根据全盘负责原则,编译器在解析这个java源文件时所发现的它所依赖和引用的所有Class也将由system classloader载入,如果system classloader不能载入某个Class时,编译器将抛出一个“cannot resolve symbol”错误。
所以首先编译就通不过,也就是编译器无法编译一个引用了不在CLASSPATH中的未知Class的java源文件,而由于拼写错误或者没有把所需类库放到CLASSPATH中,大家一定经常看到这个“cannot resolve symbol”这个编译错误吧!
其次,就是我们把这个Class放到编译路径中,成功的进行了编译,然后在运行的时候不把它放入到CLASSPATH中而利用我们自己的 classloader来动态载入这个Class,这时候也会出现“java.lang.NoClassDefFoundError”的违例,为什么呢?
我们再来分析一下,首先调用这个造型语句的可执行的Class一定是由JVM使用Launcher初始化的system classloader载入的,根据全盘负责原则,当我们进行造型的时候,JVM也会使用system classloader来尝试载入这个Class来对实例进行造型,自然在system classloader寻找不到这个Class时就会抛出“java.lang.NoClassDefFoundError”的违例。
OK,现在让我们来总结一下,java文件的编译和Class的载入执行,都是使用Launcher初始化的system classloader作为类载入器的,我们无法动态的改变system classloader,更无法让JVM使用我们自己的classloader来替换system classloader,根据全盘负责原则,就限制了编译和运行时,我们无法直接显式的使用一个system classloader寻找不到的Class,即我们只能使用Java核心类库,扩展类库和CLASSPATH中的类库中的Class。
还不死心!再尝试一下这种情况,我们把这个Class也放入到CLASSPATH中,让system classloader能够识别和载入。然后我们通过自己的classloader来从指定的class文件中载入这个Class(不能够委托 parent载入,因为这样会被system classloader从CLASSPATH中将其载入),然后实例化一个Object,并造型成这个Class,这样JVM也识别这个Class(因为 system classloader能够定位和载入这个Class从CLASSPATH中),载入的也不是CLASSPATH中的这个Class,而是从 CLASSPATH外动态载入的,这样总行了吧!十分不幸的是,这时会出现“java.lang.ClassCastException”违例。
为什么呢?我们也来分析一下,不错,我们虽然从CLASSPATH外使用我们自己的classloader动态载入了这个Class,但将它的实例造型的时候是JVM会使用system classloader来再次载入这个Class,并尝试将使用我们的自己的classloader载入的Class的一个实例造型为system classloader载入的这个Class(另外的一个)。大家发现什么问题了吗?也就是我们尝试将从一个classloader载入的Class的一个实例造型为另外一个classloader载入的Class,虽然这两个Class的名字一样,甚至是从同一个class文件中载入。但不幸的是JVM 却认为这个两个Class是不同的,即JVM认为不同的classloader载入的相同的名字的Class(即使是从同一个class文件中载入的)是不同的!这样做的原因我想大概也是主要出于安全性考虑,这样就保证所有的核心Java类都是system classloader载入的,我们无法用自己的classloader载入的相同名字的Class的实例来替换它们的实例。
看到这里,聪明的读者一定想到了该如何动态载入我们的Class,实例化,造型并调用了吧!
那就是利用面向对象的基本特性之一的多形性。我们把我们动态载入的Class的实例造型成它的一个system classloader所能识别的父类就行了!这是为什么呢?我们还是要再来分析一次。当我们用我们自己的classloader来动态载入这我们只要把这个Class的时候,发现它有一个父类Class,在载入它之前JVM先会载入这个父类Class,这个父类Class是system classloader所能识别的,根据委托机制,它将由system classloader载入,然后我们的classloader再载入这个Class,创建一个实例,造型为这个父类Class,注意了,造型成这个父类 Class的时候(也就是上溯)是面向对象的java语言所允许的并且JVM也支持的,JVM就使用system classloader再次载入这个父类Class,然后将此实例造型为这个父类Class。大家可以从这个过程发现这个父类Class都是由 system classloader载入的,也就是同一个class loader载入的同一个Class,所以造型的时候不会出现任何异常。而根据多形性,调用这个父类的方法时,真正执行的是这个Class(非父类 Class)的覆盖了父类方法的方法。这些方法中也可以引用system classloader不能识别的Class,因为根据全盘负责原则,只要载入这个Class的classloader即我们自己定义的 classloader能够定位和载入这些Class就行了。
这样我们就可以事先定义好一组接口或者基类并放入CLASSPATH中,然后在执行的时候动态的载入实现或者继承了这些接口或基类的子类。还不明白吗?让我们来想一想Servlet吧,web application server能够载入任何继承了Servlet的Class并正确的执行它们,不管它实际的Class是什么,就是都把它们实例化成为一个Servlet Class,然后执行Servlet的init,doPost,doGet和destroy等方法的,而不管这个Servlet是从web- inf/lib和web-inf/classes下由system classloader的子classloader(即定制的classloader)动态载入。说了这么多希望大家都明白了。在applet,ejb等容器中,都是采用了这种机制.
对于以上各种情况,希望大家实际编写一些example来实验一下。
最后我再说点别的, classloader虽然称为类加载器,但并不意味着只能用来加载Class,我们还可以利用它也获得图片,音频文件等资源的URL,当然,这些资源必须在CLASSPATH中的jar类库中或目录下。我们来看API的doc中关于ClassLoader的两个寻找资源和Class的方法描述吧:
public URL getResource(String name)
用指定的名字来查找资源,一个资源是一些能够被class代码访问的在某种程度上依赖于代码位置的数据(图片,音频,文本等等)。
一个资源的名字是以'/'号分隔确定资源的路径名的。
这个方法将先请求parent classloader搜索资源,如果没有parent,则会在内置在虚拟机中的classloader(即bootstrap classloader)的路径中搜索。如果失败,这个方法将调用findResource(String)来寻找资源。
Java代码
public static URL getSystemResource(String name)
从用来载入类的搜索路径中查找一个指定名字的资源。这个方法使用system class loader来定位资源。即相当于ClassLoader.getSystemClassLoader().getResource(name)。
例如:
Java代码
System.out.println(ClassLoader.getSystemResource("java/lang/String.class"));
的结果为:
jar:file:/C:/j2sdk1.4.1_01/jre/lib/rt.jar!/java/lang/String.class
表明String.class文件在rt.jar的java/lang目录中。
因此我们可以将图片等资源随同Class一同打包到jar类库中(当然,也可单独打包这些资源)并添加它们到class loader的搜索路径中,我们就可以无需关心这些资源的具体位置,让class loader来帮我们寻找了!
bootstrap classloader
|
extension classloader
|
system classloader
bootstrap classloader -引导(也称为原始)类加载器,它负责加载Java的核心类。在Sun的JVM中,在执行java的命令中使用-Xbootclasspath选项或使用 - D选项指定sun.boot.class.path系统属性值可以指定附加的类。这个加载器的是非常特殊的,它实际上不是 java.lang.ClassLoader的子类,而是由JVM自身实现的。大家可以通过执行以下代码来获得bootstrap classloader加载了那些核心类库:
Java代码
URL[] urls=sun.misc.Launcher.getBootstrapClassPath().getURLs();
for (int i = 0; i < urls.length; i++) {
System.out.println(urls.toExternalForm());
}
在我的计算机上的结果为:
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/dom.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/sax.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xalan-2.3.1.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xercesImpl-2.0.0.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xml-apis.jar
file:/C:/j2sdk1.4.1_01/jre/lib/endorsed/xsltc.jar
file:/C:/j2sdk1.4.1_01/jre/lib/rt.jar
file:/C:/j2sdk1.4.1_01/jre/lib/i18n.jar
file:/C:/j2sdk1.4.1_01/jre/lib/sunrsasign.jar
file:/C:/j2sdk1.4.1_01/jre/lib/jsse.jar
file:/C:/j2sdk1.4.1_01/jre/lib/jce.jar
file:/C:/j2sdk1.4.1_01/jre/lib/charsets.jar
file:/C:/j2sdk1.4.1_01/jre/classes
这时大家知道了为什么我们不需要在系统属性CLASSPATH中指定这些类库了吧,因为JVM在启动的时候就自动加载它们了。
extension classloader -扩展类加载器,它负责加载JRE的扩展目录(JAVA_HOME/jre/lib/ext或者由java.ext.dirs系统属性指定的)中JAR的类包。这为引入除Java核心类以外的新功能提供了一个标准机制。因为默认的扩展目录对所有从同一个JRE中启动的JVM都是通用的,所以放入这个目录的 JAR类包对所有的JVM和system classloader都是可见的。在这个实例上调用方法getParent()总是返回空值null,因为引导加载器bootstrap classloader不是一个真正的ClassLoader实例。所以当大家执行以下代码时:
Java代码
System.out.println(System.getProperty("java.ext.dirs"));
ClassLoader extensionClassloader=ClassLoader.getSystemClassLoader().getParent();
System.out.println("the parent of extension classloader : "+extensionClassloader.getParent());
结果为:
C:\j2sdk1.4.1_01\jre\lib\ext
the parent of extension classloader : null
extension classloader是system classloader的parent,而bootstrap classloader是extension classloader的parent,但它不是一个实际的classloader,所以为null。
system classloader -系统(也称为应用)类加载器,它负责在JVM被启动时,加载来自在命令java中的-classpath或者java.class.path系统属性或者 CLASSPATH操作系统属性所指定的JAR类包和类路径。总能通过静态方法ClassLoader.getSystemClassLoader()找到该类加载器。如果没有特别指定,则用户自定义的任何类加载器都将该类加载器作为它的父加载器。执行以下代码即可获得:
System.out.println(System.getProperty("java.class.path"));
输出结果则为用户在系统属性里面设置的CLASSPATH。
classloader 加载类用的是全盘负责委托机制。所谓全盘负责,即是当一个classloader加载一个Class的时候,这个Class所依赖的和引用的所有 Class也由这个classloader负责载入,除非是显式的使用另外一个classloader载入;委托机制则是先让parent(父)类加载器 (而不是super,它与parent classloader类不是继承关系)寻找,只有在parent找不到的时候才从自己的类路径中去寻找。此外类加载还采用了cache机制,也就是如果 cache中保存了这个Class就直接返回它,如果没有才从文件中读取和转换成Class,并存入cache,这就是为什么我们修改了Class但是必须重新启动JVM才能生效的原因。
每个ClassLoader加载Class的过程是:
1.检测此Class是否载入过(即在cache中是否有此Class),如果有到8,如果没有到2
2.如果parent classloader不存在(没有parent,那parent一定是bootstrap classloader了),到4
3.请求parent classloader载入,如果成功到8,不成功到5
4.请求jvm从bootstrap classloader中载入,如果成功到8
5.寻找Class文件(从与此classloader相关的类路径中寻找)。如果找不到则到7.
6.从文件中载入Class,到8.
7.抛出ClassNotFoundException.
8.返回Class.
其中5.6步我们可以通过覆盖ClassLoader的findClass方法来实现自己的载入策略。甚至覆盖loadClass方法来实现自己的载入过程。
类加载器的顺序是:
先是bootstrap classloader,然后是extension classloader,最后才是system classloader。大家会发现加载的Class越是重要的越在靠前面。这样做的原因是出于安全性的考虑,试想如果system classloader“亲自”加载了一个具有破坏性的“java.lang.System”类的后果吧。这种委托机制保证了用户即使具有一个这样的类,也把它加入到了类路径中,但是它永远不会被载入,因为这个类总是由bootstrap classloader来加载的。大家可以执行一下以下的代码:
System.out.println(System.class.getClassLoader());
将会看到结果是null,这就表明java.lang.System是由bootstrap classloader加载的,因为bootstrap classloader不是一个真正的ClassLoader实例,而是由JVM实现的,正如前面已经说过的。
下面就让我们来看看JVM是如何来为我们来建立类加载器的结构的:
sun.misc.Launcher,顾名思义,当你执行java命令的时候,JVM会先使用bootstrap classloader载入并初始化一个Launcher,执行下来代码:
Java代码
System.out.println("the Launcher's classloader is "+sun.misc.Launcher.getLauncher().getClass().getClassLoader());
:
the Launcher's classloader is null (因为是用bootstrap classloader加载,所以class loader为null)
Launcher 会根据系统和命令设定初始化好class loader结构,JVM就用它来获得extension classloader和system classloader,并载入所有的需要载入的Class,最后执行java命令指定的带有静态的main方法的Class。extension classloader实际上是sun.misc.Launcher$ExtClassLoader类的一个实例,system classloader实际上是sun.misc.Launcher$AppClassLoader类的一个实例。并且都是 java.net.URLClassLoader的子类。
让我们来看看Launcher初试化的过程的部分代码。
Launcher的部分代码:
Java代码
public class Launcher {
public Launcher() {
ExtClassLoader extclassloader;
try {
//初始化extension classloader
extclassloader = ExtClassLoader.getExtClassLoader();
} catch(IOException ioexception) {
throw new InternalError("Could not create extension class loader");
}
try {
//初始化system classloader,parent是extension classloader
loader = AppClassLoader.getAppClassLoader(extclassloader);
} catch(IOException ioexception1) {
throw new InternalError("Could not create application class loader");
}
//将system classloader设置成当前线程的context classloader(将在后面加以介绍)
Thread.currentThread().setContextClassLoader(loader);
......
}
public ClassLoader getClassLoader() {
//返回system classloader
return loader;
}
}
extension classloader的部分代码:
Java代码
static class Launcher$ExtClassLoader extends URLClassLoader {
public static Launcher$ExtClassLoader getExtClassLoader()
throws IOException
{
File afile[] = getExtDirs();
return (Launcher$ExtClassLoader)AccessController.doPrivileged(new Launcher$1(afile));
}
private static File[] getExtDirs() {
//获得系统属性“java.ext.dirs”
String s = System.getProperty("java.ext.dirs");
File afile[];
if(s != null) {
StringTokenizer stringtokenizer = new StringTokenizer(s, File.pathSeparator);
int i = stringtokenizer.countTokens();
afile = new File;
for(int j = 0; j < i; j++)
afile[j] = new File(stringtokenizer.nextToken());
} else {
afile = new File[0];
}
return afile;
}
}
system classloader的部分代码:
Java代码
static class Launcher$AppClassLoader extends URLClassLoader
{
public static ClassLoader getAppClassLoader(ClassLoader classloader)
throws IOException
{
//获得系统属性“java.class.path”
String s = System.getProperty("java.class.path");
File afile[] = s != null ? Launcher.access$200(s) : new File[0];
return (Launcher$AppClassLoader)AccessController.doPrivileged(new Launcher$2(s, afile, classloader));
}
}
看了源代码大家就清楚了吧,extension classloader是使用系统属性“java.ext.dirs”设置类搜索路径的,并且没有parent。system classloader是使用系统属性“java.class.path”设置类搜索路径的,并且有一个parent classloader。Launcher初始化extension classloader,system classloader,并将system classloader设置成为context classloader,但是仅仅返回system classloader给JVM。
这里怎么又出来一个context classloader呢?它有什么用呢?我们在建立一个线程Thread的时候,可以为这个线程通过setContextClassLoader方法来指定一个合适的classloader作为这个线程的context classloader,当此线程运行的时候,我们可以通过getContextClassLoader方法来获得此context classloader,就可以用它来载入我们所需要的Class。默认的是system classloader。利用这个特性,我们可以“打破”classloader委托机制了,父classloader可以获得当前线程的context classloader,而这个context classloader可以是它的子classloader或者其他的classloader,那么父classloader就可以从其获得所需的 Class,这就打破了只能向父classloader请求的限制了。这个机制可以满足当我们的classpath是在运行时才确定,并由定制的 classloader加载的时候,由system classloader(即在jvm classpath中)加载的class可以通过context classloader获得定制的classloader并加载入特定的class(通常是抽象类和接口,定制的classloader中是其实现),例如web应用中的servlet就是用这种机制加载的.
好了,现在我们了解了classloader的结构和工作原理,那么我们如何实现在运行时的动态载入和更新呢?只要我们能够动态改变类搜索路径和清除classloader的cache中已经载入的Class就行了,有两个方案,一是我们继承一个classloader,覆盖loadclass方法,动态的寻找Class文件并使用defineClass方法来;另一个则非常简单实用,只要重新使用一个新的类搜索路径来new一个classloader就行了,这样即更新了类搜索路径以便来载入新的Class,也重新生成了一个空白的cache(当然,类搜索路径不一定必须更改)。噢,太好了,我们几乎不用做什么工作,java.netURLClassLoader正是一个符合我们要求的classloader!我们可以直接使用或者继承它就可以了!
这是j2se1.4 API的doc中URLClassLoader的两个构造器的描述:
URLClassLoader(URL[] urls)
Constructs a new URLClassLoader for the specified URLs using the default delegation parent ClassLoader.
URLClassLoader(URL[] urls, ClassLoader parent)
Constructs a new URLClassLoader for the given URLs.
其中URL[] urls就是我们要设置的类搜索路径,parent就是这个classloader的parent classloader,默认的是system classloader。
好,现在我们能够动态的载入Class了,这样我们就可以利用newInstance方法来获得一个Object。但我们如何将此Object造型呢?可以将此Object造型成它本身的Class吗?
首先让我们来分析一下java源文件的编译,运行吧!javac命令是调用“JAVA_HOME/lib/tools.jar”中的“com.sun.tools.javac.Main”的compile方法来编译:
Java代码
public static int compile(String as[]);
public static int compile(String as[], PrintWriter printwriter);
返回0表示编译成功,字符串数组as则是我们用javac命令编译时的参数,以空格划分。例如:
javac -classpath c:\foo\bar.jar;. -d c:\ c:\Some.java
则字符串数组as为{"-classpath","c:\\foo\\bar.jar;.","-d","c:\\","c:\\Some.java"},如果带有PrintWriter参数,则会把编译信息出到这个指定的printWriter中。默认的输出是System.err。
其中 Main是由JVM使用Launcher初始化的system classloader载入的,根据全盘负责原则,编译器在解析这个java源文件时所发现的它所依赖和引用的所有Class也将由system classloader载入,如果system classloader不能载入某个Class时,编译器将抛出一个“cannot resolve symbol”错误。
所以首先编译就通不过,也就是编译器无法编译一个引用了不在CLASSPATH中的未知Class的java源文件,而由于拼写错误或者没有把所需类库放到CLASSPATH中,大家一定经常看到这个“cannot resolve symbol”这个编译错误吧!
其次,就是我们把这个Class放到编译路径中,成功的进行了编译,然后在运行的时候不把它放入到CLASSPATH中而利用我们自己的 classloader来动态载入这个Class,这时候也会出现“java.lang.NoClassDefFoundError”的违例,为什么呢?
我们再来分析一下,首先调用这个造型语句的可执行的Class一定是由JVM使用Launcher初始化的system classloader载入的,根据全盘负责原则,当我们进行造型的时候,JVM也会使用system classloader来尝试载入这个Class来对实例进行造型,自然在system classloader寻找不到这个Class时就会抛出“java.lang.NoClassDefFoundError”的违例。
OK,现在让我们来总结一下,java文件的编译和Class的载入执行,都是使用Launcher初始化的system classloader作为类载入器的,我们无法动态的改变system classloader,更无法让JVM使用我们自己的classloader来替换system classloader,根据全盘负责原则,就限制了编译和运行时,我们无法直接显式的使用一个system classloader寻找不到的Class,即我们只能使用Java核心类库,扩展类库和CLASSPATH中的类库中的Class。
还不死心!再尝试一下这种情况,我们把这个Class也放入到CLASSPATH中,让system classloader能够识别和载入。然后我们通过自己的classloader来从指定的class文件中载入这个Class(不能够委托 parent载入,因为这样会被system classloader从CLASSPATH中将其载入),然后实例化一个Object,并造型成这个Class,这样JVM也识别这个Class(因为 system classloader能够定位和载入这个Class从CLASSPATH中),载入的也不是CLASSPATH中的这个Class,而是从 CLASSPATH外动态载入的,这样总行了吧!十分不幸的是,这时会出现“java.lang.ClassCastException”违例。
为什么呢?我们也来分析一下,不错,我们虽然从CLASSPATH外使用我们自己的classloader动态载入了这个Class,但将它的实例造型的时候是JVM会使用system classloader来再次载入这个Class,并尝试将使用我们的自己的classloader载入的Class的一个实例造型为system classloader载入的这个Class(另外的一个)。大家发现什么问题了吗?也就是我们尝试将从一个classloader载入的Class的一个实例造型为另外一个classloader载入的Class,虽然这两个Class的名字一样,甚至是从同一个class文件中载入。但不幸的是JVM 却认为这个两个Class是不同的,即JVM认为不同的classloader载入的相同的名字的Class(即使是从同一个class文件中载入的)是不同的!这样做的原因我想大概也是主要出于安全性考虑,这样就保证所有的核心Java类都是system classloader载入的,我们无法用自己的classloader载入的相同名字的Class的实例来替换它们的实例。
看到这里,聪明的读者一定想到了该如何动态载入我们的Class,实例化,造型并调用了吧!
那就是利用面向对象的基本特性之一的多形性。我们把我们动态载入的Class的实例造型成它的一个system classloader所能识别的父类就行了!这是为什么呢?我们还是要再来分析一次。当我们用我们自己的classloader来动态载入这我们只要把这个Class的时候,发现它有一个父类Class,在载入它之前JVM先会载入这个父类Class,这个父类Class是system classloader所能识别的,根据委托机制,它将由system classloader载入,然后我们的classloader再载入这个Class,创建一个实例,造型为这个父类Class,注意了,造型成这个父类 Class的时候(也就是上溯)是面向对象的java语言所允许的并且JVM也支持的,JVM就使用system classloader再次载入这个父类Class,然后将此实例造型为这个父类Class。大家可以从这个过程发现这个父类Class都是由 system classloader载入的,也就是同一个class loader载入的同一个Class,所以造型的时候不会出现任何异常。而根据多形性,调用这个父类的方法时,真正执行的是这个Class(非父类 Class)的覆盖了父类方法的方法。这些方法中也可以引用system classloader不能识别的Class,因为根据全盘负责原则,只要载入这个Class的classloader即我们自己定义的 classloader能够定位和载入这些Class就行了。
这样我们就可以事先定义好一组接口或者基类并放入CLASSPATH中,然后在执行的时候动态的载入实现或者继承了这些接口或基类的子类。还不明白吗?让我们来想一想Servlet吧,web application server能够载入任何继承了Servlet的Class并正确的执行它们,不管它实际的Class是什么,就是都把它们实例化成为一个Servlet Class,然后执行Servlet的init,doPost,doGet和destroy等方法的,而不管这个Servlet是从web- inf/lib和web-inf/classes下由system classloader的子classloader(即定制的classloader)动态载入。说了这么多希望大家都明白了。在applet,ejb等容器中,都是采用了这种机制.
对于以上各种情况,希望大家实际编写一些example来实验一下。
最后我再说点别的, classloader虽然称为类加载器,但并不意味着只能用来加载Class,我们还可以利用它也获得图片,音频文件等资源的URL,当然,这些资源必须在CLASSPATH中的jar类库中或目录下。我们来看API的doc中关于ClassLoader的两个寻找资源和Class的方法描述吧:
public URL getResource(String name)
用指定的名字来查找资源,一个资源是一些能够被class代码访问的在某种程度上依赖于代码位置的数据(图片,音频,文本等等)。
一个资源的名字是以'/'号分隔确定资源的路径名的。
这个方法将先请求parent classloader搜索资源,如果没有parent,则会在内置在虚拟机中的classloader(即bootstrap classloader)的路径中搜索。如果失败,这个方法将调用findResource(String)来寻找资源。
Java代码
public static URL getSystemResource(String name)
从用来载入类的搜索路径中查找一个指定名字的资源。这个方法使用system class loader来定位资源。即相当于ClassLoader.getSystemClassLoader().getResource(name)。
例如:
Java代码
System.out.println(ClassLoader.getSystemResource("java/lang/String.class"));
的结果为:
jar:file:/C:/j2sdk1.4.1_01/jre/lib/rt.jar!/java/lang/String.class
表明String.class文件在rt.jar的java/lang目录中。
因此我们可以将图片等资源随同Class一同打包到jar类库中(当然,也可单独打包这些资源)并添加它们到class loader的搜索路径中,我们就可以无需关心这些资源的具体位置,让class loader来帮我们寻找了!
发表评论
-
菜鸟 Spring 源码解读 推荐流程
2012-01-11 09:18 5145Spring源代码解析(一):IOC容器:http://www ... -
深入剖析Classloader(一)--类的主动使用与被动使用
2011-12-27 22:13 1110我们知道java运行的是这样的,首先java编译器将我们的源代 ... -
Java中连接字符串时是使用+号还是使用StringBuilder?
2011-12-26 14:04 927字符串是Java程序中最常用的一种数据结构之一。在Java中的 ... -
转一篇有关Java的内存泄露的文章(受益哦)
2011-07-20 09:28 7751 引言 Java的一个 ... -
Tomcat内存溢出的原因
2011-07-19 09:41 732Tomcat内存溢出的原因 在生产环境中tomcat内 ... -
深入研究java.lang.ThreadLocal类
2011-07-13 09:39 687一、概述 ThreadLocal是什么呢?其实Thread ... -
jboss中实现跨war包session同步
2011-06-12 23:28 1299跨war包session同步解决方 ... -
开源框架spring详解-----AOP的深刻理解
2011-05-26 22:13 1255开源框架spring详解-----AOP的深刻理解 AOP的 ... -
struts2核心工作流程与工作原理
2011-05-26 15:35 12901. Struts2架构图 这是S truts2官方站点提供的 ... -
Spring注入方式及用到的注解 -----@Component,@Service,@Controller,@Repository
2011-05-26 15:04 1243注入方式: 把DAO实现 ... -
Java中的native关键字浅析(Java Native Interface)
2011-05-21 23:13 743JNI是Java Native Interface的 ... -
Volatile 变量
2011-04-26 17:01 665Java 语言中的 volatile 变量可以被看作是一种 “ ... -
Java对象的强、软、弱和虚引用
2011-04-26 16:04 6321.Java对象的强、软、 ... -
Web 应用程序常见漏洞 CSRF 的入侵检测与防范
2011-04-23 15:00 1137简介: 互联网的安全问题一直存在,并且在可预见的未来中没有消弭 ... -
详解XSS跨站脚本攻击
2011-04-23 13:46 1167一、什么是XSS攻击 XSS ... -
CSRF攻击原理解析
2011-04-22 10:29 13030×00. 前言 在Web程序中 ... -
selenium 初步体检之富文本框操作
2011-04-20 20:10 1558public class LoginTest extends ... -
webx
2011-03-05 17:54 1030webx 学习笔记。 -
Java读带有BOM的UTF-8文件乱码解决方法
2011-03-02 11:12 2469Java default io reader does not ... -
java sftp tools
2011-02-24 13:30 1520import java.io.File; import jav ...
相关推荐
检查完了之后,按照相反的顺序进行加载,如果 Bootstrap 加载器找不到这个类,则往下委托,直到找到类文件。 二、类加载过程 类加载过程可以分为以下几个步骤: * Loading:将类文件从文件系统加载到 JVM 的内存...
虚拟机将描述类的数据从Class文件加载到内存,并对数据进行校验、准备、解析和初始化,终会形成可以被虚拟机使用的Java类型,这是一个虚拟机的类加载机制。Java中的类是动态加载的,只有在运行期间使用到该类的...
Java虚拟机的类动态装载技术能够在运行时刻动态地加载或者替换系统的某些功能模块,而不影响系统其他功能模块的正常运行。 Java虚拟机类装载的过程可以分为三个步骤:装载、链接和初始化。在装载过程中,JVM会查找...
- **方法区**:与堆一样,也是各线程共享的内存区域,主要存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。 - **运行时常量池**:每个类或接口的常量池都包含在方法区中,用于存放编译...
通过这些验证步骤,可以确保加载的类文件不会破坏Java虚拟机的安全性和稳定性。 ##### 2. 及时编译器 (JIT Compiler) 及时编译器是一种动态编译技术,用于提高Java程序的运行效率。JIT编译器的主要特点包括: - *...
Java虚拟机(JVM)是Java程序的核心组成部分,它负责执行字节码并管理程序运行时的内存。本文主要探讨JVM的类加载机制,包括类加载、连接、初始化等关键过程,以及类的主动使用和被动使用的情况。 首先,我们要理解...
- **方法区**:存储已被虚拟机加载的类信息、常量、静态变量等数据。 #### 3. 垃圾收集算法 为了有效地管理和回收不再使用的对象所占用的内存,JVM采用了多种垃圾收集算法,例如: - **标记-清除算法**:先标记所有...
1. 类加载机制:JVM如何加载类文件并创建类的实例,类的加载顺序和双亲委派模型等。 2. 内存管理:JVM内存区域的划分,包括堆、栈、方法区、程序计数器等区域的作用和管理方式,以及垃圾回收机制。 3. 执行引擎:...
Java虚拟机参数可以分为基本参数和扩展参数两类,基本参数用于设置虚拟机的运行模式和类搜索路径,而扩展参数则提供了更多的自定义选项。 基本参数 * -client和-server参数:用于设置虚拟机的运行模式,-client...
《Java虚拟机规范(Java SE 7)》是Java开发者深入理解JVM(Java Virtual Machine)运作机制的重要参考资料。这份规范详细定义了Java程序如何在虚拟机上运行,包括类加载、字节码执行、内存管理、垃圾收集、异常处理等...
Java虚拟机类装载机制是Java运行环境的核心技术之一,它允许程序在运行时动态加载和使用类,极大地增强了软件的灵活性和可扩展性。本文主要探讨了类装载的原理、实现方式及其在实际应用中的作用。 首先,类装载的...
5. Java虚拟机类加载顺序: - Bootstrap Classloader:加载JVM启动时的核心类库,如rt.jar。 - Extension Classloader:加载JRE的扩展目录下的JAR文件,或由java.ext.dirs指定的目录。 - System Classloader:...
### 深入Java虚拟机加载初始化 #### Classloader的作用及意义 在深入了解Java虚拟机(JVM)的加载初始化之前,我们先明确一下`Classloader`的角色。简单地说,`Classloader`的主要职责是将编译后的`.class`文件...
验证阶段检查.class文件的格式是否正确,确保它符合Java虚拟机规范,并且不包含恶意代码。这个过程对父类和子类都会执行。 4. 准备 准备阶段为类的静态变量分配内存,并初始化它们到默认值。父类的静态变量在子类...
Java 类加载器是Java虚拟机(JVM)的核心组成部分,它负责将类的字节码加载到内存中并转换为可执行的Java类。类加载器的作用不仅仅是加载类,还包括确保类的唯一性,避免重复加载,并且遵循特定的加载顺序。以下是对...
因此,在设计类加载器时,应考虑如何正确处理类的命名空间和加载顺序,以防止出现冲突。 总的来说,理解并掌握类加载器的原理和实现,不仅可以帮助我们更好地理解JVM的工作方式,还能让我们在遇到特定需求时能够...