转贴地址:http://blog.csdn.net/songkexin/archive/2007/01/18/1486289.aspx
先说几句:
首先作者的劳动果实,让我对这个比较模糊到现在对范式有了一个比较清晰的认识。不过,结合我自己的实际理解及经验,我会在里面加入一些我个人的注释,以便于更好的理解,我希望原作者能够同意。我所以的个人说明都会放在{}内,并且以绿色的字体呈现。
引言
数据库的设计范式是数据库设计所需要满足的规范,满足这些规范的数据库是简洁的、结构明晰的,同时,不会发生插入(insert)、删除(delete)和更新(update)操作异常。反之则是乱七八糟,不仅给数据库的编程人员制造麻烦,而且面目可憎,可能存储了大量不需要的冗余信息。
设计范式是不是很难懂呢?非也,大学教材上给我们一堆数学公式我们当然看不懂,也记不住。所以我们很多人就根本不按照范式来设计数据库。
实质上,设计范式用很形象、很简洁的话语就能说清楚,道明白。本文将对范式进行通俗地说明,并以笔者曾经设计的一个简单论坛的数据库为例来讲解怎样将这些范式应用于实际工程。
范式说明
第一范式(1NF):数据库表中的字段都是单一属性的,不可再分{个人理解:就像一个家庭,有几个儿子,其它的儿子都是由一个部份构成,唯独有一个儿子需要两个部份构成,即这就不是一个正常的家庭,呵呵,说得过分了}。这个单一属性由基本类型构成,包括整型、实数、字符型、逻辑型、日期型等。
例如,如下的数据库表是符合第一范式的:
字段1 字段2 字段3 字段4
而这样的数据库表是不符合第一范式的:
字段1 字段2 字段3 字段4
字段3.1 字段3.2
很显然,在当前的任何关系数据库管理系统(DBMS)中,傻瓜也不可能做出不符合第一范式的数据库,因为这些DBMS不允许你把数据库表的一列再分成二列或多列。因此,你想在现有的DBMS中设计出不符合第一范式的数据库都是不可能的。
第二范式(2NF):数据库表中不存在非关键字段对任一候选关键字段的部分函数依赖(部分函数依赖指的是存在组合关键字中的某些字段决定非关键字段的情况),也即所有非关键字段都完全依赖于任意一组候选关键字。{个人理解:如在一个家庭里面,任何决定都只能是爸爸、妈妈一致通过后才能够算数,就说明是正常的;如果有一个女儿可以只由妈妈决定做什么,那么这就违背了原则,就不满足约定。}
假定选课关系表为SelectCourse(学号, 姓名, 年龄, 课程名称, 成绩, 学分),关键字为组合关键字(学号, 课程名称),因为存在如下决定关系:
(学号, 课程名称) → (姓名, 年龄, 成绩, 学分)
这个数据库表不满足第二范式,因为存在如下决定关系:
(课程名称) → (学分)
(学号) → (姓名, 年龄)
即存在组合关键字中的字段决定非关键字的情况。
由于不符合2NF,这个选课关系表会存在如下问题:
(1) 数据冗余:
同一门课程由n个学生选修,"学分"就重复n-1次;同一个学生选修了m门课程,姓名和年龄就重复了m-1次。
(2) 更新异常:
若调整了某门课程的学分,数据表中所有行的"学分"值都要更新,否则会出现同一门课程学分不同的情况。
(3) 插入异常:
假设要开设一门新的课程,暂时还没有人选修。这样,由于还没有"学号"关键字,课程名称和学分也无法记录入数据库。
(4) 删除异常:
假设一批学生已经完成课程的选修,这些选修记录就应该从数据库表中删除。但是,与此同时,课程名称和学分信息也被删除了。很显然,这也会导致插入异常。
把选课关系表SelectCourse改为如下三个表:
学生:Student(学号, 姓名, 年龄);
课程:Course(课程名称, 学分);{个人理解:可以在该加上ID字段作为主键,因为如果以后课程名称有变动,再如果这个数据库运行了10年,有1000万次选课记录,那么你要去更新这一千万条记录,也算是一个费资源的问题。如果有了ID,不管你名称怎么变,都只会影响一条当前记录}
SelectCourse(学号, 课程名称, 成绩)。{这里相应就改为:SelectCourse(学号, 课程ID,成绩)}
这样的数据库表是符合第二范式的,消除了数据冗余、更新异常、插入异常和删除异常。
另外,所有单关键字的数据库表都符合第二范式,因为不可能存在组合关键字。
第三范式(3NF):在第二范式的基础上,数据表中如果不存在非关键字段对任一候选关键字段的传递函数依赖则符合第三范式。所谓传递函数依赖,指的是如 果存在"A → B → C"的决定关系,则C传递函数依赖于A。因此,满足第三范式的数据库表应该不存在如下依赖关系:
关键字段 → 非关键字段x → 非关键字段y
假定学生关系表为Student(学号, 姓名, 年龄, 所在学院, 学院地点, 学院电话),关键字为单一关键字"学号",因为存在如下决定关系:
(学号) → (姓名, 年龄, 所在学院, 学院地点, 学院电话)
这个数据库是符合2NF的,但是不符合3NF,因为存在如下决定关系:
(学号) → (所在学院) → (学院地点, 学院电话)
即存在非关键字段"学院地点"、"学院电话"对关键字段"学号"的传递函数依赖。
它也会存在数据冗余、更新异常、插入异常和删除异常的情况,读者可自行分析得知。
把学生关系表分为如下两个表:
学生:(学号, 姓名, 年龄, 所在学院);
学院:(学院, 地点, 电话)。
这样的数据库表是符合第三范式的,消除了数据冗余、更新异常、插入异常和删除异常。
鲍依斯-科得范式(BCNF):在第三范式的基础上,数据库表中如果不存在任何字段对任一候选关键字段的传递函数依赖则符合第三范式。
假设仓库管理关系表为StorehouseManage(仓库ID, 存储物品ID, 管理员ID, 数量),且有一个管理员只在一个仓库工作;一个仓库可以存储多种物品。这个数据库表中存在如下决定关系:
(仓库ID, 存储物品ID) →(管理员ID, 数量)
(管理员ID, 存储物品ID) → (仓库ID, 数量)
所以,(仓库ID, 存储物品ID)和(管理员ID, 存储物品ID)都是StorehouseManage的候选关键字,表中的唯一非关键字段为数量,它是符合第三范式的。但是,由于存在如下决定关系:
(仓库ID) → (管理员ID)
(管理员ID) → (仓库ID)
即存在关键字段决定关键字段的情况,所以其不符合BCNF范式。它会出现如下异常情况:
(1) 删除异常:
当仓库被清空后,所有"存储物品ID"和"数量"信息被删除的同时,"仓库ID"和"管理员ID"信息也被删除了。
(2) 插入异常:
当仓库没有存储任何物品时,无法给仓库分配管理员。
(3) 更新异常:
如果仓库换了管理员,则表中所有行的管理员ID都要修改。
把仓库管理关系表分解为二个关系表:
仓库管理:StorehouseManage(仓库ID, 管理员ID);
仓库:Storehouse(仓库ID, 存储物品ID, 数量)。
这样的数据库表是符合BCNF范式的,消除了删除异常、插入异常和更新异常。
范式应用
我们来逐步搞定一个论坛的数据库,有如下信息:
(1) 用户:用户名,email,主页,电话,联系地址
(2) 帖子:发帖标题,发帖内容,回复标题,回复内容
第一次我们将数据库设计为仅仅存在表:
用户名 email 主页 电话 联系地址 发帖标题 发帖内容 回复标题 回复内容
这个数据库表符合第一范式,但是没有任何一组候选关键字能决定数据库表的整行,唯一的关键字段用户名也不能完全决定整个元组。我们需要增加"发帖ID"、"回复ID"字段,即将表修改为:
用户名 email 主页 电话 联系地址 发帖ID 发帖标题 发帖内容 回复ID 回复标题 回复内容
这样数据表中的关键字(用户名,发帖ID,回复ID)能决定整行:
(用户名,发帖ID,回复ID) → (email,主页,电话,联系地址,发帖标题,发帖内容,回复标题,回复内容)
但是,这样的设计不符合第二范式,因为存在如下决定关系:
(用户名) → (email,主页,电话,联系地址)
(发帖ID) → (发帖标题,发帖内容)
(回复ID) → (回复标题,回复内容)
即非关键字段部分函数依赖于候选关键字段,很明显,这个设计会导致大量的数据冗余和操作异常。
我们将数据库表分解为(带下划线的为关键字):
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:发帖ID,标题,内容
(3) 回复信息:回复ID,标题,内容
(4) 发贴:用户名,发帖ID
(5) 回复:发帖ID,回复ID
这样的设计是满足第1、2、3范式和BCNF范式要求的,但是这样的设计是不是最好的呢?
不一定。
观察可知,第4项"发帖"中的"用户名"和"发帖ID"之间是1:N的关系,因此我们可以把"发帖"合并到第2项的"帖子信息"中;第5项"回复"中的 "发帖ID"和"回复ID"之间也是1:N的关系,因此我们可以把"回复"合并到第3项的"回复信息"中。这样可以一定量地减少数据冗余,新的设计为:
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:用户名,发帖ID,标题,内容
(3) 回复信息:发帖ID,回复ID,标题,内容
数据库表1显然满足所有范式的要求;
数据库表2中存在非关键字段"标题"、"内容"对关键字段"发帖ID"的部分函数依赖,即不满足第二范式的要求,但是这一设计并不会导致数据冗余和操作异常;
数据库表3中也存在非关键字段"标题"、"内容"对关键字段"回复ID"的部分函数依赖,也不满足第二范式的要求,但是与数据库表2相似,这一设计也不会导致数据冗余和操作异常。
由此可以看出,并不一定要强行满足范式的要求,对于1:N关系,当1的一边合并到N的那边后,N的那边就不再满足第二范式了,但是这种设计反而比较好!
对于M:N的关系,不能将M一边或N一边合并到另一边去,这样会导致不符合范式要求,同时导致操作异常和数据冗余。
对于1:1的关系,我们可以将左边的1或者右边的1合并到另一边去,设计导致不符合范式要求,但是并不会导致操作异常和数据冗余。
结论
满足范式要求的数据库设计是结构清晰的,同时可避免数据冗余和操作异常。这并意味着不符合范式要求的设计一定是错误的,在数据库表中存在1:1或1:N关系这种较特殊的情况下,合并导致的不符合范式要求反而是合理的。
在我们设计数据库的时候,一定要时刻考虑范式的要求。
分享到:
相关推荐
"数据库设计三大范式应用实例剖析" 数据库设计是数据库系统的核心部分,直接影响着数据库的性能、安全性和可维护性。数据库设计的目的是为了使数据库系统满足某些标准,使得数据库系统更加简洁、明晰、易于维护和...
基于改进粒子群算法的DG储能选址定容优化模型:解决电力系统时序性问题的可靠程序解决方案,基于改进粒子群算法的DG储能选址定容模型优化解决电力系统问题,DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题。下面我将对程序进行详细分析。 首先,程序开始时加载了一些数据文件,包括gfjl、fljl、fhjl1、cjgs和fhbl。这些文件可能包含了电力系统的各种参数和数据。 接下来是一些参数的设置,包括三种蓄电池的参数矩阵、迭代次数、种群大小、速度更新参数、惯性权重、储能动作策略和限制条件等。 然后,程序进行了一些初始化操作,包括初始化种群、速度和适应度等。 接下来是主要的迭代过程。程序使用粒子群算法的思想,通过更新粒子的位置和速度来寻找最优解。在每次迭代中,程序计算了每个粒子的适应度,并更新个体最佳位置和全局最佳位置。 在每次迭代中,程序还进行了一些额外的计算,如潮流计算、储能约束等。这些计算可能涉及到电力系统的潮流计算、功率平衡等知识点。 最后,程序输
数学建模相关主题资源2
内容概要:本文详细介绍了一系列用于科学研究、工程项目和技术开发中至关重要的实验程序编写与文档报告撰写的资源和工具。从代码托管平台(GitHub/GitLab/Kaggle/CodeOcean)到云端计算环境(Colab),以及多种类型的编辑器(LaTeX/Microsoft Word/Overleaf/Typora),还有涵盖整个研究周期的各种辅助工具:如可视化工具(Tableau)、数据分析平台(R/Pandas)、项目管理工具(Trello/Jira)、数据管理和伦理审核支持(Figshare/IRB等),最后提供了典型报告的具体结构指导及其范本实例链接(arXiv/PubMed)。这为实验流程中的各个环节提供了系统的解决方案,极大地提高了工作的效率。 适合人群:高校学生、科研工作者、工程技术人员以及从事学术写作的人员,无论是新手入门还是有一定经验的人士都能从中受益。 使用场景及目标:帮助读者高效地准备并开展实验研究活动;促进团队间协作交流;规范研究报告的形式;提高对所收集资料的安全性和隐私保护意识;确保遵循国际公认的伦理准则进行实验。
四轮毂驱动电动汽车稳定性控制策略:基于滑模与模糊神经网络的转矩分配与仿真研究,四轮毂驱动电动汽车稳定性控制:基于滑模与模糊神经网络的转矩分配策略及联合仿真验证,四轮毂驱动电动汽车稳定性控制,分布式驱动转矩分配。 上层基于滑模,模糊神经网络控制器决策横摆力矩,下层基于动态载荷分配,最优分配,平均分配均可做。 simulink与carsim联合仿真。 ,四轮毂驱动;电动汽车稳定性控制;分布式驱动;转矩分配;滑模控制;模糊神经网络控制器;横摆力矩;动态载荷分配;最优分配;平均分配;Simulink仿真;Carsim仿真,四驱电动稳定性控制:滑模与模糊神经网络决策的转矩分配研究
本资源提供了一份详细的PyCharm安装教程,涵盖下载、安装、配置、激活及使用步骤,适合新手快速搭建Python开发环境。
毕业设计
原版宋体.ttf,原版宋体安装文件,安装方式,直接右键安装。
利用Xilinx FPGA内嵌的软核处理器MicroBlaze,加上自主编写的AXI_IIC控制器,实现对IMX327传感器IIC总线的控制,同时辅以UART调试串口,实现系统状态的实时监控与调试。
在 GEE(Google Earth Engine)中,XEE 包是一个用于处理和分析地理空间数据的工具。以下是对 GEE 中 XEE 包的具体介绍: 主要特性 地理数据处理:提供强大的函数和工具,用于处理遥感影像和其他地理空间数据。 高效计算:利用云计算能力,支持大规模数据集的快速处理。 可视化:内置可视化工具,方便用户查看和分析数据。 集成性:可以与其他 GEE API 和工具无缝集成,支持多种数据源。 适用场景 环境监测:用于监测森林砍伐、城市扩展、水体变化等环境问题。 农业分析:分析作物生长、土地利用变化等农业相关数据。 气候研究:研究气候变化对生态系统和人类活动的影响。
毕业设计
整个文件的代码
名字微控制器_STM32_DFU_引导加载程序_dapboo_1740989527.zip
详细介绍及样例数据:https://blog.csdn.net/T0620514/article/details/145991332
anaconda配置pytorch环境
立体仓库控制组态王6.55与三菱PLC联机仿真程序:视频教程与IO表接线图CAD详解,9仓位立体仓库控制系统优化方案:组态王6.55与三菱PLC联机仿真程序视频教程及IO表接线图CAD详解,9仓位立体仓库控制组态王6.55和三菱PLC联机仿真程序+视频+带io表接线图CAD ,关键词:立体仓库;控制组态王6.55;三菱PLC;联机仿真程序;视频;io表接线图;CAD,立体仓库控制组态王与三菱PLC联机仿真程序资源包
基于Maxwwell设计的经典外转子永磁同步电机案例:直流母线24V,大功率与高效率驱动设计,基于Maxwell设计的经典永磁同步电机案例:200W功率,外转子结构,直流母线电压与电机参数详解,基于maxwwell设计的经典200W,2200RPM 外转子,直流母线24V,42极36槽,定子外径81.5 轴向长度15 ,0.86Nm, 永磁同步电机(PMSM)设计案例,该案例可用于生产,或者学习用 ,经典设计案例; 200W; 2200RPM外转子; 直流母线24V; 42极36槽; 定子外径81.5; 轴向长度15; 永磁同步电机(PMSM); 生产学习用。,经典200W永磁同步电机设计案例:Maxwell外转子,高效率2200RPM直流母线系统