联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd于1993年提出的,他同时提出了关于OLAP的12条准则。OLAP的提出引起了很大的反响,OLAP作为一类产品同联机事务处理 (OLTP) 明显区分开来。
当今的数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)、联机分析处理OLAP(On-Line Analytical Processing)。OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。下表列出了OLTP与OLAP之间的比较。
|
|
OLTP
|
OLAP
|
用户
|
操作人员,低层管理人员
|
决策人员,高级管理人员
|
功能
|
日常操作处理
|
分析决策
|
DB 设计
|
面向应用
|
面向主题
|
数据
|
当前的, 最新的细节的, 二维的分立的
|
历史的, 聚集的, 多维的集成的, 统一的
|
存取
|
读/写数十条记录
|
读上百万条记录
|
工作单位
|
简单的事务
|
复杂的查询
|
用户数
|
上千个
|
上百个
|
DB 大小
|
100MB-GB
|
100GB-TB
|
|
OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。OLAP的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,它的技术核心是"维"这个概念。
“维”是人们观察客观世界的角度,是一种高层次的类型划分。“维”一般包含着层次关系,这种层次关系有时会相当复杂。通过把一个实体的多项重要的属性定义为多个维(dimension),使用户能对不同维上的数据进行比较。因此OLAP也可以说是多维数据分析工具的集合。
OLAP的基本多维分析操作有钻取(roll up和drill down)、切片(slice)和切块(dice)、以及旋转(pivot)、drill across、drill through等。
·钻取是改变维的层次,变换分析的粒度。它包括向上钻取(roll up)和向下钻取(drill down)。roll up是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而drill down则相反,它从汇总数据深入到细节数据进行观察或增加新维。
·切片和切块是在一部分维上选定值后,关心度量数据在剩余维上的分布。如果剩余的维只有两个,则是切片;如果有三个,则是切块。
·旋转是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。
OLAP有多种实现方法,根据存储数据的方式不同可以分为ROLAP、MOLAP、HOLAP。
ROLAP表示基于关系数据库的OLAP实现(Relational OLAP)。以关系数据库为核心,以关系型结构进行多维数据的表示和存储。ROLAP将多维数据库的多维结构划分为两类表:一类是事实表,用来存储数据和维关键字;另一类是维表,即对每个维至少使用一个表来存放维的层次、成员类别等维的描述信息。维表和事实表通过主关键字和外关键字联系在一起,形成了"星型模式"。对于层次复杂的维,为避免冗余数据占用过大的存储空间,可以使用多个表来描述,这种星型模式的扩展称为"雪花模式"。
MOLAP表示基于多维数据组织的OLAP实现(Multidimensional OLAP)。以多维数据组织方式为核心,也就是说,MOLAP使用多维数组存储数据。多维数据在存储中将形成"立方块(Cube)"的结构,在MOLAP中对"立方块"的"旋转"、"切块"、"切片"是产生多维数据报表的主要技术。
HOLAP表示基于混合数据组织的OLAP实现(Hybrid OLAP)。如低层是关系型的,高层是多维矩阵型的。这种方式具有更好的灵活性。
还有其他的一些实现OLAP的方法,如提供一个专用的SQL Server,对某些存储模式(如星型、雪片型)提供对SQL查询的特殊支持。
OLAP工具是针对特定问题的联机数据访问与分析。它通过多维的方式对数据进行分析、查询和报表。维是人们观察数据的特定角度。例如,一个企业在考虑产品的销售情况时,通常从时间、地区和产品的不同角度来深入观察产品的销售情况。这里的时间、地区和产品就是维。而这些维的不同组合和所考察的度量指标构成的多维数组则是OLAP分析的基础,可形式化表示为(维1,维2,……,维n,度量指标),如(地区、时间、产品、销售额)。多维分析是指对以多维形式组织起来的数据采取切片(Slice)、切块(Dice)、钻取(Drill-down和Roll-up)、旋转(Pivot)等各种分析动作,以求剖析数据,使用户能从多个角度、多侧面地观察数据库中的数据,从而深入理解包含在数据中的信息。
根据综合性数据的组织方式的不同,目前常见的OLAP主要有基于多维数据库的MOLAP及基于关系数据库的ROLAP两种。MOLAP是以多维的方式组织和存储数据,ROLAP则利用现有的关系数据库技术来模拟多维数据。在数据仓库应用中,OLAP应用一般是数据仓库应用的前端工具,同时OLAP工具还可以同数据挖掘工具、统计分析工具配合使用,增强决策分析功能。
|
|
分享到:
相关推荐
qtz40塔式起重机总体及塔身有限元分析法设计().zip
Elasticsearch是一个基于Lucene的搜索服务器
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
美国纽约HVAC(暖通空调)数据示例,谷歌地图数据包括:时间戳、名称、类别、地址、描述、开放网站、电话号码、开放时间、更新开放时间、评论计数、评级、主图像、评论、url、纬度、经度、地点id、国家等。 在地理位置服务(LBS)中,谷歌地图数据采集尤其受到关注,因为它提供了关于各种商业实体的详尽信息,这对于消费者和企业都有极大的价值。本篇文章将详细介绍美国纽约地区的HVAC(暖通空调)系统相关数据示例,此示例数据是通过谷歌地图抓取得到的,展示了此技术在商业和消费者领域的应用潜力。 无需外网,无需任何软件抓取谷歌地图数据:wmhuoke.com
2023-04-06-项目笔记-第四百五十五阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.453局变量的作用域_453- 2025-04-01
1_实验三 扰码、卷积编码及交织.ppt
北京交通大学901软件工程导论必备知识点.pdf
内容概要:本文档总结了 MyBatis 的常见面试题,涵盖了 MyBatis 的基本概念、优缺点、适用场合、SQL 语句编写技巧、分页机制、主键生成、参数传递方式、动态 SQL、缓存机制、关联查询及接口绑定等内容。通过对这些问题的解答,帮助开发者深入理解 MyBatis 的工作原理及其在实际项目中的应用。文档不仅介绍了 MyBatis 的核心功能,还详细解释了其在不同场景下的具体实现方法,如通过 XML 或注解配置 SQL 语句、处理复杂查询、优化性能等。 适合人群:具备一定 Java 开发经验,尤其是对 MyBatis 有初步了解的研发人员,以及希望深入了解 MyBatis 框架原理和最佳实践的开发人员。 使用场景及目标:①理解 MyBatis 的核心概念和工作原理,如 SQL 映射、参数传递、结果映射等;②掌握 MyBatis 在实际项目中的应用技巧,包括 SQL 编写、分页、主键生成、关联查询等;③学习如何通过 XML 和注解配置 SQL 语句,优化 MyBatis 性能,解决实际开发中的问题。 其他说明:文档内容详尽,涵盖面广,适合用于面试准备和技术学习。建议读者在学习过程中结合实际项目进行练习,以更好地掌握 MyBatis 的使用方法和技巧。此外,文档还提供了丰富的示例代码和配置细节,帮助读者加深理解和应用。
《基于YOLOv8的智能电网设备锈蚀评估系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
插头模具 CAD图纸.zip
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
《基于YOLOv8的智慧农业水肥一体化控制系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
python爬虫;智能切换策略,反爬检测机制
台区终端电科院送检文档
e235d-main.zip
丁祖昱:疫情对中国房地产市场影响分析及未来展望
MCP快速入门实战,详细的实战教程
YD5141SYZ后压缩式垃圾车的上装箱体设计.zip
IMG_20250401_195352.jpg
DeepSeek系列专题 DeepSeek技术溯源及前沿探索.pdf